
THE BOOK OF SWARM

STORAGE AND COMMUNICATION INFRASTRUCTURE

FOR A SELF-SOVEREIGN DIGITAL SOCIETY

VIKTOR TRÓN

the book of swarm

2024 by viktor trón

This work is licensed under a Creative Commons

“Attribution-NonCommercial-ShareAlike 3.0 Unported”

license.

ISBN 978-615-01-9983-2

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

the swarm is headed toward us

Satoshi Nakamoto

CONTENTS

Prolegomena xiii

Acknowledgments xv

I Prelude 1
1 The evolution 3

1.1 Historical context . 3

1.1.1 Web 1.0 . 3

1.1.2 Web 2.0 . 4

1.1.3 Peer-to-peer networks 9

1.1.4 The economics of BitTorrent and its limits 10

1.1.5 Towards Web 3.0 . 12

1.2 Fair data economy . 17

1.2.1 The current state of the data economy 17

1.2.2 The current state and issues of data sovereignty . . 19

1.2.3 Towards self-sovereign data 21

1.2.4 Artificial intelligence and self-sovereign data . . . 22

1.2.5 Collective information 25

1.3 The vision . 26

1.3.1 Values . 26

1.3.2 Design principles . 27

1.3.3 Objectives . 28

1.3.4 Impact areas . 29

1.3.5 The future . 29

v

II Design and architecture 33
2 Network 37

2.1 Topology and routing . 37

2.1.1 Requirements for underlay network 37

2.1.2 Overlay addressing 39

2.1.3 Kademlia routing . 40

2.1.4 Bootstrapping and maintaining Kademlia topology 48

2.2 Swarm storage . 50

2.2.1 Distributed immutable store for chunks 50

2.2.2 Content addressed chunks 54

2.2.3 Single owner chunks 55

2.2.4 Chunk encryption 59

2.2.5 Redundancy by local replication 61

2.3 Push and pull: chunk retrieval and syncing 65

2.3.1 Retrieval . 65

2.3.2 Push syncing . 71

2.3.3 Pull syncing . 72

2.3.4 Light nodes . 75

3 Incentives 79
3.1 Sharing bandwidth . 79

3.1.1 Incentives for serving and relaying 79

3.1.2 Pricing protocol for chunk retrieval 82

3.1.3 Incentivising push-syncing 88

3.2 Swap: accounting and settlement 90

3.2.1 Peer to peer accounting 91

3.2.2 Cheques as off-chain commitments to pay 93

3.2.3 Waivers . 96

3.2.4 Zero cash entry . 99

3.2.5 Sanctions and blacklisting 100

3.3 Postage stamps . 103

3.3.1 Purchasing upload capacity 103

3.3.2 Limited issuance . 106

3.3.3 Rules of the reserve 108

3.3.4 Reserve depth, storage depth, neighbourhood depth111

3.4 Fair redistribution . 113

3.4.1 Neighbourhoods, uniformity and probabilistic out-

payments . 115

3.4.2 The mechanics of the redistribution game 116

3.4.3 Staking . 120

3.4.4 Neighbourhood consensus over the reserve 122

3.4.5 Pricing and network dynamics 127

3.5 Insurance: negative incentives 130

3.5.1 Punitive measures 131

3.5.2 Contracts through receipts 133

3.5.3 Submitting a challenge 134

3.5.4 Successful challenge and enforcement 136

3.6 Summary . 137

4 Building on the DISC 139
4.1 Data structures . 139

4.1.1 Files and the Swarm hash 140

4.1.2 Collections and manifests 144

4.1.3 URL-based addressing and name resolution 146

4.1.4 Maps and key–value stores 148

4.2 Access control . 149

4.2.1 Encryption . 149

4.2.2 Managing access . 151

4.2.3 Selective access to multiple parties 153

4.2.4 Access hierarchy . 155

4.3 Feeds: mutability in an immutable store 155

4.3.1 Feed chunks . 156

4.3.2 Indexing schemes 157

4.3.3 Integrity . 162

4.3.4 Epoch-based indexing 164

4.3.5 Real-time data exchange 167

4.4 Pss: direct push messaging with mailboxing 171

4.4.1 Trojan chunks . 172

4.4.2 Initial contact for key exchange 177

4.4.3 Addressed envelopes 180

4.4.4 Notification requests 185

5 Persistence 193

5.1 Cross-neighbourhood redundancy: erasure codes and dis-

persed replicas . 193

5.1.1 Error correcting codes 194

5.1.2 Erasure coding in the Swarm hash tree 195

5.1.3 Incomplete chunks and dispersed replicas 197

5.1.4 Prefetching strategies for retrieval 200

5.2 Data stewardship: pinning, reupload and recovery 201

5.2.1 Local pinning . 201

5.2.2 Global pinning . 202

5.2.3 Recovery . 204

5.3 Dream: deletion and immutable content 208

5.3.1 Deletion and revoking access 209

5.3.2 Construction . 211

5.3.3 Correctness, security and privacy 216

6 Developer interface 219
6.1 Configuring and tracking uploads 219

6.1.1 Upload options . 219

6.1.2 Upload tags and progress bar 220

6.1.3 Postage . 222

6.1.4 Additional upload features 224

6.2 Storage . 226

6.2.1 Uploading files . 226

6.2.2 Collections and manifests 227

6.2.3 Access control . 229

6.2.4 Download . 230

6.3 Communication . 232

Bibliography 233

III Indexes 241
Glossary 243

Index 265

Acronyms and abbreviations 271

LIST OF FIGURES

1.1 Swarm’s layered design . 35

2.1 From overlay address space to Kademlia table 42

2.2 Nearest neighbours . 43

2.3 Iterative and Forwarding Kademlia routing 44

2.4 Bin density . 47

2.5 Distributed hash tables (DHTs) 52

2.6 Swarm DISC: Distributed Immutable Store for Chunks . 52

2.7 Content addressed chunk 55

2.8 BMT: Binary Merkle Tree hash used as chunk hash in

Swarm . 56

2.9 Compact segment inclusion proofs for chunks 57

2.10 Single owner chunk . 58

2.11 Chunk encryption in Swarm 60

2.12 Nearest neighbours . 63

2.13 Alternative ways to deliver chunks: direct, routed and

backward . 66

2.14 Backwarding: a pattern for anonymous request-response

round-trips in forwarding Kademlia 68

2.15 Retrieval . 68

2.16 Push syncing . 72

2.17 Pull syncing . 74

3.1 Incentive design . 80

3.2 Incentivising retrieval . 81

3.3 Uniform chunk price across proximities would allow a DoS 84

3.4 Price arbitrage . 85

ix

3.5 Incentives for push-sync protocol 89

3.6 Swap balance and swap thresholds 92

3.7 Cheque swap . 93

3.8 The basic interaction sequence for swap chequebooks . . 95

3.9 Example sequence of mixed cheques and waivers exchange

. 98

3.10 Zero cash entry . 100

3.11 Postage stamp . 104

3.12 Postage stamps . 106

3.13 Batch structure, uniformity and over-issuance 108

3.14 Reserve capacity . 110

3.15 Depths . 114

3.16 Neighbourhood selection and pot redistribution 117

3.17 Interaction of smart contracts for swarm storage incentives118

3.18 Phases of a round of the redistribution game 119

3.19 Adaptive pricing . 130

4.1 Swarm hash . 140

4.2 Intermediate chunk . 141

4.3 Random access at arbitrary offset with Swarm hash . . . 143

4.4 Compact inclusion proofs for files 143

4.5 Manifest structure . 145

4.6 Manifest entry . 146

4.7 Access key as session key for single party access 152

4.8 Credentials to derive session key 153

4.9 Access control for multiple grantees 154

4.10 Feed chunk . 156

4.11 Feed aggregation . 161

4.12 Epoch grid with epoch-based feed updates 165

4.13 Swarm feeds as outboxes 168

4.14 Advance requests for future updates 169

4.15 Future secrecy for update addresses 170

4.16 Trojan chunk or pss message 173

4.17 Trojan chunk . 174

4.18 X3DH pre-key bundle feed update 178

4.19 X3DH initial message . 179

4.20 X3DH secret key . 179

4.21 Stamped addressed envelope’s timeline of events 182

4.22 Stamped addressed envelope’s 182

4.23 Direct notification request and response 186

4.24 Direct notification from publisher timeline of events . . . 187

4.25 Neighbourhood notifications 188

4.26 Neighbourhood notification timeline of events 189

4.27 Targeted chunk deliveries 191

4.28 Targeted chunk delivery timeline of events 191

5.1 Swarm hash split . 196

5.2 Swarm hash erasure . 198

5.3 Missing chunk notification process 206

5.4 Recovery request . 207

5.5 Recovery response . 208

PROLEGOMENA

Intended audience

The primary aim of this book is to capture the wealth of output of the first

phase of the Swarm project. It serves as a compendium for teams and

individuals participating in bringing Swarm to life in the forthcoming

stages.

The book is intended for technically inclined readers who are interested

in incorporating Swarm into their development stack and understand-

ing the motivation and design choices behind the technology. Moreover,

we extend an invitation to researchers, academics, and decentralisation

experts to review our reasoning and audit the coherence of Swarm’s

overall design. For core developers and those contributing to the wider

ecosystem by building components, tooling, or client implementations,

this book offers concrete specifications and insights into the thought

process behind them.

Structure of the book

The book comprises two major parts. The Prelude (I) delves into the mo-

tivation behind the Swarm project by describing the historical context

and laying the foundation for a fair data economy. We then present the

Swarm vision.

The second part, Design and Architecture (II), offers a comprehensive

and in-depth exploration of the design and architecture of the swarm.

This part covers all areas relevant to Swarm’s core functionality.

xiii

To complement the main content, the book includes valuable resources

such as an index, a glossary defining technical terms and acronyms,

and an appendix, providing readers with a well-rounded and complete

compendium.

How to use the book

The Prelude and Design and Architecture sections have been seamlessly

combined to form a cohesive and continuous narrative. For those wish-

ing to jump right into the technology, they can start with the Design and

Architecture part, skipping the Prelude.

On the other hand, Swarm client developers can use the book as back-

ground reading to gain a comprehensive understanding of the specifica-

tions. This approach proves valuable when seeking a wider context or

when interested in the justification for the choices made in the develop-

ment process.

ACKNOWLEDGMENTS

Editing

Many have helped me write this book, but a few that took very active

roles in making it happen are due credit. DANIEL NICKLESS is the man

behind all the diagrams; we enjoyed many hours of my giving birth to

impromptu visualisations, and he was happy to redo them several times.

Dan is a virtuoso of Illustrator and has also become a LaTeX expert to

typeset some nice trees.

I am hugely indebted to ČRT AHLIN who, beside managing the book

project, has contributed some top-quality text. He also undertook many

of the unrewarding, tedious jobs of compiling the indexes and glossaries.

Both Črt and Dan (a native speaker of English), as well as ATTILA LEND-

VAI and recently NOAH MAIZELS, did an amazing job at proofreading

and correcting mistakes and typos. The second edition has seen a major

upgrade in text quality due to the arduous work of ANDREA ROBERT. In

addition to conceptualising and drafting the idea for the book’s cover,

she worked closely with ANNA CSÚTHY, who brought the design to life

with pixel-perfect implementation. Together with GYURI BARABÁS, An-

drea also oversaw the typesetting and prepared the whole package for

the printing press.

Special thanks are due to EDINA LOVAS, whose support and enthusiasm

have always helped push me along.

xv

Authors

Swarm is co-fathered by my revered friend and colleague, the awesome

DÁNIEL A. NAGY. Dániel invented the fundamental design of Swarm

and should get the credit for quite a few major architectural decisions,

innovative ideas, and formal insights presented in this book.

ARON FISHER’s contribution to Swarm would be hard to overstate. Most

of what Swarm is now started or got worked out in sessions with Aron. He

not only contributed ingredients overall, but also co-authored the first

few orange papers and, not least, was always at the forefront, presenting

and explaining our tech in conferences and meetups.

I thank Dániel and Aron for bearing with me, enduring my sloppy, half-

baked ideas, bringing clarity, and always understanding the maths. With-

out claiming full endorsement or any responsibility for what is written

here, I would consider Dániel and Aron as co-authors of this book.

I owe deep gratitude to my partner in crime, GREGOR ŽAVCER, who has

been running the project, currently serving as director of the Swarm

Foundation. Gregor’s honest fascination and unrelenting dedication

to the project kept me going through many a low moment in the past.

Our shared vision of a decentralised future data economy, ranging from

technological innovation to ethical direction, served as the foundation

for our collaboration. A substantial portion of this book has been shaped

during our night-long brainstorming sessions. Gregor even contributed

content to the book.

I would like to thank RINKE HENDRIKSEN and ÁBEL BODÓ, who con-

tributed significant insight and innovation, mainly in the area of incen-

tivisation. Further major contributions to both underlying concepts

and their presentation came from FABIO BARONE, RALPH PILCHER on in-

centives, JAVIER PELETIER on feeds, and LOUIS HOLBROOK on feeds and

pss. Last but not least, our resident genius VIKTOR TOTH, aka NUGAON,

continues to amaze me with his creativity and ambition.

Feedback

The book benefited immensely from feedback. Those who went through

the pain of reading early versions and provided comments on the work

in progress, offering their criticism or pointing out areas of unclarity, de-

serve to be mentioned: HENNING DIETRICH, BRENDAN GRAETZ, ATTILA

LENDVAI, people from IOV labs: MARCELO ORTELLI, SANTIAGO REGUSCI,

VOJTĚCH ŠIMETKA; and people from the Swarm team: ÁBEL BODÓ, ELAD

NACHMIAS, JANOŠ GULJAŠ, PETAR RADOVIĆ, LOUIS HOLBROOK, and

ZAHOOR MOHAMED.

Conception and influences

The book of Swarm is itself an expression of the grand idea behind

Swarm: [the pursuit of] the vision of a decentralised storage and mes-

saging system built on top of the blockchain. The concept and initial

formulation of Swarm as one of the pillars of a holy trinity to realise

the Decentralised Web appeared before the launch of Ethereum in early

2015. It was by Ethereum founders VITALIK BUTERIN, GAVIN WOOD, and

JEFFREY WILCKE that Swarm was trolled onto the slippery slope of bee

jokes and geek humor. The protocol tags bzz and shh were both coined

by Vitalik.

People who were close to the cradle of Swarm include ALEX LEVERING-

TON and FELIX LANGE. Early discussions with them catalysed funda-

mental decisions that led to the design of Swarm as it now presents.

The foundations of Swarm were laid over the course of 2015. Dániel

worked with ZSOLT FELFÖLDI, of light client fame, whose code is still

being seen here and there in the Go Ethereum-based Swarm imple-

mentation. His ideas clearly have a hallmark on what Swarm set out to

be.

We are hugely indebted to ELAD VERBIN, who for years has been acting

as a scientific as well as strategic advisor to Swarm. Elad put consider-

able effort into the project, and his unparalleled insight and depth of

understanding across all aspects of Swarm have been invaluable. Partic-

ularly, his understanding of the isomorphism between pointer-based

functional data structures and content-addressed distributed data had

a major impact on how we handle higher-level functionality. Our work

on a swarm interpreter inspired the Swarm script.

Special thanks are due to DÁNIEL VARGA, ATTILA LENDVAI, and ATTILA

GAZSÓ for the long nights of brainstorming, I have learnt an awful lot

from each of you. Thanks to ALEXEY AKHUNOV and JORDI BAYLINA for

major technical insights and inspiration. My very special friend, ANAND

JAISINGH, deserves my gratitude for his unshakeable trust in me and

the project, and for the unique inspiration and synergy catalysed by his

presence in the halo of Swarm.

Early in the project, we spent quite some time with ALEX VAN DER SANDE

and FABIAN VOGELSTELLER, engaging in discussions about Swarm and

its potentials. Many ideas that came to life as a result, including man-

ifests and the HTTP API, owe them credit. People in or around the

Ethereum Foundation who shaped the idea of Swarm include TAYLOR

GERRING, CHRISTIAN REITWIESSNER, STEPHAN TUAL, ALEX BEREGSZA-

SZI, PIPER MERRIAM, and NICK SAVERS.

Team

First and foremost, my thanks to JEFFREY WILCKE, one of the three

founders and team lead of the Amsterdam go-ethereum team. He was

supporting the Ethersphere subteam Dani, Fefe, and me, protecting the

project in times of austerity. I am forever grateful to all current and past

members of the Swarm team: ethernal gratitude to NICK JOHNSON, who,

during the brief period he was on the team, created ENS. I extend my

gratitude to those special individuals who have been with the team for

the longest time: LOUIS HOLBROOK, ZAHOOR MOHAMED, and FABIO

BARONE. Their creativity and faith have been instrumental in helping us

navigate through rough times. Thanks to ANTON EVANGELATOV, BÁLINT

GÁBOR, JANOŠ GULJAŠ, and ELAD NACHMIAS for their massive contri-

butions to the codebase. Thanks to FERENC SZABÓ, VLAD GLUHOVSKY,

RAFAEL MATIAS, and many others that cannot be named but have con-

tributed to the code. RALPH PICHLER deserves a special mention as he

has been a keen follower and supporter of our project for many years.

Gradually, he became an honorary member of the team, and played

a pivotal role in implementing the initial version of the entire smart

contract suite for swap, swear, and swindle. Additionally, he drove the

development of blockchain interaction, bandwidth incentives, and key

management.

Major kudos to JANOŠ GULJAŠ, who bravely took over the role of engi-

neering lead and created a new killer team in Belgrade with the excellent

PETAR RADOVIĆ, SVETOMIR SMILJKOVIĆ, and IVAN VANDOT.

I am grateful to VOJTĚCH ŠIMETKA and the Swarm contingent at IOV

labs, who played a crucial role in saving the project. MARCELO ORTELLI

AND SANTIAGO REGUSCI have been major contributors to the current

codebase, alongside the Belgrade team.

I would also like to thank TIM BANSEMER, who is one of a kind, with

unimaginable effectiveness and drive. His contributions will always

be felt in and around the team, the code, the documentation, and the

processes.

The latest ‘bee‘ codebase is mainly the work of the four musketeers:

ALOK NERURKAR, ESAD AKAR, ANATOL LUPANESCU, and PETER MREKAJ,

recruited by the legendary and elusive ELAD NACHMIAS. This core team

received assistance from VLADO PAJIĆ and MARKO BLAZEVIĆ.

Special big thanks to the irreplaceable GYURI BARABÁS, our resident

stats and maths guru, whose contributions are of immense importance.

Swarm would not have been anywhere without the legend CALLUM

TONER, who pulled together all R&D efforts and led the project to deliver

an actually working product virtually single-handedly.

Ecosystem

Swarm has always attracted a wide community of enthusiasts as well as

an ecosystem of companies and projects whose support and encourage-

ment kept us alive during some dark days. Special thanks goes to JARRAD

HOPE, JACEK SIEKA, and OSCAR THOREN of Status, MARCIN RABENDA

of Consensys, TADEJ FIUS, ZENEL BATAGELJ from Datafund, JAVIER AND

ALFONSO PELETIER of Epic Labs, ERIC TANG and DOUG PETKANICS of

LivePeer, SOURABH NIYOGI of Wolk, LEWIS MARSHALL, VAUGHN MCKEN-

ZIE, FRED TIBBLES and OREN SOKOLOVSKY of JAAK, CARL YOUNGBLOOD,

PAUL LE CAM, SHANE HOWLEY, and DOUG LEONARD from Mainframe.

We are also grateful for the contributions of ANAND JAISINGH, DIMITRY

KHOLKHOV, IGOR SHARUDIN of BeeFree, and ATTILA GAZSÓ from the

Felfele Foundation.

Recently, we have received massive amounts of help from two unaffili-

ated community members, known by their Discord handles as LDEFFENB

and MFW78.

I would like to thank all participants of Swarm Summits, hack weeks,

and other gatherings. Many of the ideas in this book were born from the

conversations held during these events. I also want to thank MICHELLE

THUY and KEVIN MOHANAN. Thanks are due to the countless grant

applicants and bounty submitters for their contribution to a vibrant

ecosystem of applications.

Backers

Thanks to my friend and colleague PÉTER FÖLDIÁK for his continued

support fuelled by his genuine faith in the project. He believed in Swarm

before it even existed. Thanks to the ICO participants as well as early

backers for their contribution to executing on our ambitious roadmap.

Legacy

Finally, my deepest gratitude goes to my mentors and teachers, ANDRÁS

KORNAI, LÁSZLÓ KÁLMÁN, PÉTER HALÁCSY, and PÉTER REBRUS, who

have shaped my thinking and skills. They will always be my intellectual

heroes.

Part I

Prelude

1

1. THE EVOLUTION

This chapter provides background information about the motivation

for and evolution of Swarm and its vision today. Section 1.1 lays out a

historical analysis of the World Wide Web, focusing on how it became

the place it is today. Section 1.2 introduces the concept and emphasises

the importance of data sovereignty, collective information, and a fair

data economy. It discusses the infrastructure a self-sovereign society

will need to collectively host, move, and process data. Finally, Section 1.3

recaps the core values underlying the vision, spells out the requirements

of the technology, and establishes the design principles that guide us in

manifesting Swarm.

1.1 Historical context

While the Internet in general—and the World Wide Web (WWW) in

particular—has dramatically reduced the costs of disseminating infor-

mation, these costs are still not zero, and their allocation heavily influ-

ences who gets to publish what content and who will consume it.

In order to appreciate the problems we are trying to solve, a little journey

into the historical evolution of the World Wide Web proves to be helpful.

1.1.1 Web 1.0

In the era of Web 1.0, in order to have your content accessible to the

whole world, you would typically fire up a web server or use some free or

cheap web hosting space to upload your content, which could then be

navigated through a series of HTML pages. If your content was unpop-

3

4 CHAPTER 1. THE EVOLUTION

ular, you still had to bear the cost of maintaining the server or paying

the hosting to keep it accessible. However, true disaster struck when, for

one reason or another, it became popular (e.g. you got "slashdotted").

At this point, your traffic bill skyrocketed just before either your server

crashed under the load or your hosting provider throttled your band-

width to the point of making your content essentially unavailable for

the majority of your audience. If you wanted to stay popular, you had to

invest in high-availability clusters connected with fat pipes; your costs

grew together with your popularity, without any obvious way to cover

them. There were very few practical ways to allow (let alone require)

your audience to directly share the ensuing financial burden.

The prevailing belief at the time was that the internet service provider

(ISP) would come to the rescue and resolve these challenges. Since in

the early days of the Web revolution, bargaining about peering arrange-

ments between the ISPs often centred around the location of providers

and consumers and which ISP was making money from which other’s

network. Indeed, when there was a sharp imbalance between origina-

tors of TCP connection requests (aka SYN packets), it was customary

for the ISP originating the request to compensate the recipient ISP. This

setup somewhat incentivised the recipient ISP to help support those

hosting popular content. In practice, however, this incentive structure

usually led to some ISPs putting a free pr0n or warez server in the server

room to tilt back the scales of SYN packet counters. This meant that

blogs catering to niche audiences had no way of competing and were

generally left out in the cold. Note, however, that back then, creator-

publishers still typically owned their content.

1.1.2 Web 2.0

The transition to Web 2.0 changed much of that. The migration from

personal home pages running on one’s own server, using Tim Berners-

Lee’s elegantly simplistic and accessible hypertext markup language,

to server-side scripting using CGI-gateways, Perl, and the inexorable

PHP, led to a departure from the beautiful idea that anyone could write

and run their own website using simple tools. This divergence set the

CHAPTER 1. THE EVOLUTION 5

web on a path towards a prohibitively difficult and increasingly complex

stack of scripting languages and databases. Suddenly, the world wide

web wasn’t a beginner-friendly place any more. At the same time, new

technologies emerged, allowing the creation of web applications with

simple user interfaces that enabled unskilled publishers to simply POST

their data to the server and divorce themselves of the responsibilities of

actually delivering the bits to their end users. This marked the birth of

Web 2.0.

Capturing the initial maker spirit of the web, sites like MySpace and

Geocities now ruled the waves. These platforms offered users a person-

alised corner of the internet to call their own, complete with as many

scrolling text marquees, flashing pink glitter Comic Sans banners, and

all the ingenious XSS attacks a script kiddie could dream of. It was like

a web within the web—a welcoming and open environment for users

to start publishing their own content, increasingly without the need

to learn HTML, and without rules. Platforms abounded, and suddenly

there was a place for everyone, a phpBB forum for every niche interest

imaginable. The web became full of life and the dotcom boom showered

Silicon Valley in riches.

Of course, this youthful naivete, the fabulous rainbow-coloured play-

ground wouldn’t last. The notoriously unreliable MySpace fell victim to

its open policy of allowing scripting, leading users’ pages to become un-

reliable and rendering the platform virtually unusable. When Facebook

arrived with a clean-looking interface that simply worked, it became

clear that MySpace’s time was up, and people migrated in droves. The

popular internet acquired a more self-important undertone, and we

filed into the stark white corporate office of Facebook. But there was

trouble brewing. While offering this service for "free," Mr. Zuckerberg

and others had an agenda. In exchange for hosting our data, we (the

dumb f*cks; Carlson 2010) would have to trust him with it. Obviously, we

did. For the time being, there was ostensibly no business model beyond

luring in more venture finance, amassing huge user-bases, and a "we’ll

deal with the problem later" attitude. But from the start, extensive and

unreadable T&Cs granted all the content rights to the platforms. While

in the Web 1.0 era, it was easy to keep a backup of your website and mi-

6 CHAPTER 1. THE EVOLUTION

grate to a new host, or simply host it from home yourself, now those with

controversial views had a new problem to deal with: "deplatforming".

At the infrastructure level, this centralisation became evident through

the emergence of unthinkably huge data-centres. Jeff Bezos evolved his

book-selling business to become the richest man on Earth by provid-

ing solutions for those who struggled with the technical and financial

hurdles of implementing increasingly complex and expensive infras-

tructure. This new constellation of web services was capable of dealing

with those irregular traffic spikes which would have crippled widely

successful content in the past. Soon enough, a significant portion of

the web came to be hosted by a handful of large companies. Corporate

acquisitions and an endless stream of VC money led to a greater and

greater concentration of power. A forgotten alliance of open-source pro-

grammers, creators of the royalty-free Apache web server, and Google,

which introduced paradigm-shifting methods for organising and access-

ing vast amounts of data, dealt a crippling blow to Microsoft’s attempt

to force the web into a hellish, proprietary existence forever imprisoned

in Internet Explorer 6. Of course, Google eventually accepted "parental

oversight," shelved its promise to "do no evil," succumbed to its very

own form of megalomania, and began to eat the competition. Steadily,

email became Gmail, online ads became AdSense, and Google crept

into every facet of daily life on the web.

On the surface, everything was rosy. A technological utopia hyper-

connected the world in a way no-one could have imagined. No longer

was the web just for academics and the super 1337—it made the sum

of human knowledge available to anyone, and now that smartphones

became ubiquitous, it could be accessed anywhere. Wikipedia gave

everyone superhuman knowledge, while Google allowed us to find and

access it in a moment. Facebook gave us the ability to communicate

with everyone we had ever known, for free. However, underneath all this,

there was one problem buried just below the glittering facade. Google

knew what they were doing. So were Amazon, Facebook and Microsoft.

And so did some punks, since 1984.

CHAPTER 1. THE EVOLUTION 7

After acquiring a massive number of users, the time had finally come

for these behemoth platforms to cut a check to investors. They could

no longer continue delaying to figure out a business model. To provide

value back to shareholders, the platforms turned to advertising revenue

as panacea. Google and the other platforms may have investigated other

potential sources of income, however, no significant alternatives were

adopted. Now the web started to get complicated, and distracting. Ad-

vertisements appeared everywhere, and the pink flashing glitter banners

were back, this time pulling your attention from the content you came

for to deliver you to the next user acquisition opportunity.

And as if this weren’t enough, there were more horrors to come. The

Web lost the last shred of its innocence when the proliferation of data

became unwieldy, and algorithms were used to "improve" our access to

the content we wanted. Now that the platforms had all our data, they

were able to analyse it to work out what we wanted to see, seemingly

knowing us even better than we knew ourselves. However, there was a

hidden catch—these all-encompassing data sets and secret algorithms

were available for sale to the highest bidder. Deep-pocketed political

organisations could target swing voters with unprecedented precision

and efficacy. Cyberspace became suddenly all too real, while consensus

reality became a thing of the past. News not only became fake; it evolved

into personally targeted manipulation, as often nudging us to act against

our best interests, all without us even realising it. The desire to save

on hosting costs turned everyone into a target to become a readily

controllable puppet.

At the same time, more terrifying revelations lay in wait. The egalitarian

ideals that once underpinned the construction of a trustful internet

proved to be the most naive of all. The DoD, the very institution that

facilitated its adoption since the early days, now sought to reclaim con-

trol. Edward Snowden walked out of the NSA with a virtual stack of

documents, the contents of which no one could have imagined (unless,

of course, you had thought the Bourne Conspiracy was a documentary).

It turned out that the protocols had been subverted, and all the warrant

canaries were long dead. The world’s major governments had been run-

ning a surveillance dragnet on the entire global population—incessantly

8 CHAPTER 1. THE EVOLUTION

storing, processing, cataloguing, indexing, and providing on-demand

access to the sum total of a person’s online activity. It was all available

at the touch of an XKeyscore button—an all-seeing, unblinking Optical

Nerve determined to "collect it all" and "know it all", no matter who

or what the context. Big Brother turned out to look like Sauron. This

gross erosion of privacy, along with many other similar efforts by various

power-drunk or megalomaniac state and individual actors across the

world to track and censor oppressed people, political adversaries, and

journalists, had provided impetus for the Tor project. An extraordinary

collaboration between the US Military, MIT, and the EFF, the Tor project

offered a means to obfuscate the origin of a request and deliver con-

tent in a protected, anonymous manner. While wildly successful and a

household name in some niches, Tor has not seen much mainstream

adoption due to its relatively high latency resulting from its inherent

inefficiencies.

By the time of Snowden’s revelations, the web had become ubiquitous

and an integral part of almost every facet of human life, with the vast

majority of it operated by large corporations. While reliability problems

were now a thing of the past, there was a price to pay. Content producers

were offered context-sensitive, targeted advertising models in a Faustian

bargain. The offers came with a knowing grin, revealing that these

corporations knew content producers had no choice. "We will give you

scalable hosting that will cope with any traffic your audience throws

at it", they sang, "but in return, you must give us control over your

content. We are going to track each member of your audience and

collect (and own, *whistle*) as much of their personal data as possible.

We will, of course, decide who can and who cannot see it, as is our right,

no less. Additionally, we will proactively censor it and share your data

with authorities as necessary to protect our business." As a consequence,

millions of small content producers created immense value for a handful

of mega corporations, getting peanuts in return—typically, free hosting

and advertisement. What a deal!

Setting aside the resulting FUD of the Web 2.0 data and news apocalypse

that we witness today, there are also a couple of technical problems with

the web’s underlying architecture. The corporate approach has led to

CHAPTER 1. THE EVOLUTION 9

a centralist maxim, where all requests must be routed through some

backbone somewhere, to a monolithic data-centre, and then passed

around, processed, and finally returned back. Even if to simply send a

message to someone in the next room. This client-server architecture

has at best flimsy security and was so often breached that it became

the new normal, leaving oil-slicks of unencrypted personal data and

even plaintext passwords in its wake, spread all over the web. The last

nail in the coffin is the sprawl of incoherent standards and interfaces

this has facilitated. Today, spaghetti code implementations of growing

complexity subdivide the web into multifarious micro-services. Even

well-funded companies find it increasingly difficult to deal with the

development bills, and it is common that fledgling start-ups drown

in a feature-factory sea of spiralling technical debt. A modern web

application’s stack in all cases is a cobbled together Goldberg machine

comprising so many moving parts that it is almost impossible even

for a supra-nation-state corporation to maintain and develop these

implementations without numerous bugs and regular security flaws.

Well, except for Google and Amazon, to be honest. At any rate, we’re well

overdue for a reboot. In the end, it’s the data describing our lives. They

are already trying but yet they have no power to lock us into this mess.

1.1.3 Peer-to-peer networks

As the centralised Web 2.0 took over the world, the peer-to-peer (P2P)

revolution was also gathering pace, quietly evolving in parallel. P2P

traffic rapidly accounted for the majority of packets flowing through

the pipes, overtaking the SYN-bait servers mentioned earlier. It proved

that by working together to use their hitherto massively underutilised

upstream bandwidth, end users could achieve the same availability and

throughput for their content as previously only achievable with the help

of big corporations and their data centres attached to the fattest pipes of

the Internet’s backbone. What’s more, it could be realized at a fraction

of the cost. Importantly, users retained far greater control and freedom

over their data. Eventually, this mode of data distribution proved to

be remarkably resilient even in the face of powerful and well-funded

entities’ desperate exertions to shut it down.

10 CHAPTER 1. THE EVOLUTION

However, even the most evolved mode of P2P file sharing, tracker-less

BitTorrent (Pouwelse et al. 2005) was only that: file-level sharing. This

was not at all suitable for providing the kind of interactive, responsive

experience that people were coming to expect from web applications on

Web 2.0. Additionally, while becoming extremely popular, BitTorrent was

not conceived of with economics or game theory in mind. It was very

much a product of the era before the world took note of the revolution

its namesake would precipitate: that is to say, before anyone understood

blockchains and the power of cryptocurrency and incentivisation.

1.1.4 The economics of BitTorrent and its limits

The genius of BitTorrent lies in its clever resource optimisation (Cohen

2003): if many clients want to download the same content from a user,

it gives them each different parts in the first phase. In the second phase,

they can swap the parts between each other in a tit-for-tat fashion until

everyone has all the parts. This way, the upstream bandwidth cost

for a user hosting content (the seeder in BitTorrent parlance) remains

roughly the same, regardless of how many clients download the content

simultaneously. This solves the most problematic, ingrained issue of

the ancient, centralised, master-and-slave design of Hypertext Transfer

Protocol (HTTP), the protocol underpinning the World Wide Web.

Cheating (i.e. feeding your peers with garbage data) is discouraged by

the use of hierarchical, piece-wise hashing. Each package offered for

download is identified by a single short hash, and any part of it can be

cryptographically verified to be a specific component of the package

without requiring knowledge of other parts, and incurring only a very

small computational overhead.

But this beautifully simple approach has five consequential shortcom-

ings, all somewhat related (see Locher et al. 2006, Piatek et al. 2007):

lack of economic incentives

There are no built-in incentives for users to seed content for others

to download. In particular, there is no way to exchange upstream

bandwidth provided by seeding for the downstream bandwidth

CHAPTER 1. THE EVOLUTION 11

required for downloading content. Effectively, the upstream band-

width provided by seeding content to users is not rewarded. Because

as much upstream bandwidth as possible can improve the experi-

ence with some online games, it can be a rational, if selfish choice

to switch seeding off. Add some laziness, and it stays off forever.
initial latency

Typically, downloads start slowly and with some delay. Clients that

are further ahead in downloading have significantly more to offer

to newcomers than they can offer in return. I.e. the newcomers

have nothing to download (yet) for those further ahead. The result

of this is that BitTorrent downloads start as a trickle before turning

into a full-blown torrent of bits. This peculiarity has severely limited

the use of BitTorrent for interactive applications that require both

fast responses and high bandwidth, even though it would otherwise

constitute a brilliant solution for many games.
lack of fine-grained content addressing

Small chunks of data can only be shared as part of the larger file.

They can be pinpointed for targeted that leaves the rest of a file out

to optimise access. Peers for the download can only be found by

querying the distributed hash table (DHT) for a desired file, and it is

not possible to look for peers at the chunk-level. As the advertising

of available content happens exclusively at the level of files, this

leads to inefficiencies, as the same chunks of data can often appear

verbatim in multiple files. So, while theoretically, all peers who

have the chunk could provide it, there is no way to find those peers

without the name or announced hash of the chunk’s enveloping file.
no incentive to keep sharing

Nodes are not rewarded for their sharing efforts (storage and band-

width) once they have achieved their objective, i.e. retrieving all

desired files from their peers.
no privacy or ambiguity

Nodes publicly advertise exactly the content they are seeding, mak-

ing it easy for attackers to discover the IP address of peers hosting

content they would like to see removed. Any adversaries can then

easily DDOS them, while corporations and nation states are able

to petition the ISP for the physical location of the connection. This

12 CHAPTER 1. THE EVOLUTION

has led to a grey market of VPN providers helping users circum-

vent this. Although these services offer assurances of privacy, it

is usually impossible to verify them as their systems are typically

closed-source.

While spectacularly popular and useful, BitTorrent is only a rudimen-

tary, albeit undoubtedly genius first step. It is amazing how far we can

get simply by sharing our upstream bandwidth, hard-drive space, and

tiny amounts of computing power–even despite the lack of proper ac-

counting and indexing. However-–surprise!-–by adding just a few more

emergent technologies to the mix, especially the blockchain, we get

something that truly deserves the Web 3.0 moniker: a decentralised,

censorship-resistant platform for sharing and collectively creating con-

tent while retaining full control over it. What’s more, the cost of this is al-

most entirely covered by using and sharing the resources supplied by the

breathtakingly powerful, underutilised super-computer (by yesteryear’s

standards :-)) that most of us already own.

1.1.5 Towards Web 3.0

The Times 03/
Jan/2009 Chancel
lor on brink of
second bailout f
or banks

At 6:15 on the 3rd of January 2009, a mysterious Cypherpunk created

the first block of a chain that would encircle the entire world, funda-

mentally changing the way we think about money, forever. The genie of

cryptocurrency was out of the bottle. Satoshi Nakamoto had achieved

something no one else could—the de facto (albeit small scale) disin-

termediation of banks through decentralised, trustless value transfer.

Ever since that moment, we have effectively returned to the gold stan-

dard—everyone can now own sound money. Money that no-one can

multiply or inflate out of your pocket. What’s more, now we can even

issue our own currency, complete with an arbitrary monetary policy and

CHAPTER 1. THE EVOLUTION 13

a globally deployed electronic transmission system. It is still not well

understood how much this will change our economies, but the system

attracted an unprecedented degree of wealth, withdrawn from tradi-

tional asset classes, leading to a total capitalisation of crypto surpassing

the staggering one trillion US dollars.

This first step was a monumental turning point. Now we had authen-

tication and value transfer baked into the system at its very core. But

as much as it was conceptually brilliant, it had some minor and not-

so-minor problems with utility. It allowed the transmission of digital

value, one could even ’colour’ the coins or transmit short messages like

the one above that marks the fateful date of the first block—but that’s

it. And, regarding scale... every transaction must be stored on every

node. Sharding was not built-in. Worse, the protection of the digital

money made it necessary that every node processed exactly the same

as every other node, all the time. This was the opposite of a parallelised

computing cluster, and millions of times slower.

When Vitalik conceived of Ethereum, he accepted some of these limita-

tions, but the utility of the system took a massive leap. He added the facil-

ity for Turing-complete computation via the Ethereum Virtual Machine

(EVM) which enabled a cornucopia of applications that could run in this

trustless setting. The concept was at once a dazzling paradigm shift and

a consistent evolution of Bitcoin, which itself was based on a tiny virtual

machine, with every single transaction really being—unbeknownst to

many—a mini program. But Ethereum went all the way, and that again

changed everything. The possibilities were numerous and alluring, and

Web 3.0 was born.

However, there was still a problem to overcome to fully transcend the

world of Web 2.0—storing data on the blockchain was prohibitively ex-

pensive for anything but a tiny amount. Both Bitcoin and Ethereum

had taken the layout of BitTorrent and run with it, complementing the

architecture with the capability to transact, but leaving consideration

about storing non-systemic data for later. Bitcoin had introduced a

less secure second circuit below the distribution of blocks: candidate

transactions are shipped around without fanfare, as secondary citizens,

14 CHAPTER 1. THE EVOLUTION

literally without protocol. Ethereum went further, separating out the

headers from the blocks, creating a third tier that ferried the actual block

data as needed. Because both classes of data are essential to the opera-

tion of the system, these could be called critical design flaws. Bitcoin’s

maker probably didn’t envision mining becoming the exclusive domain

of a highly specialised elite. Any transactor would have been expected

to be able to mine their own transactions. Ethereum’s developers faced

the even harder challenge of data availability, and perhaps assuming it

could be addressed later, ignored it for the moment.

In other news, the straightforward data dissemination approach of Bit-

Torrent was successfully implemented for web content distribution by

ZeroNet (ZeroNet community 2019). However, because of the aforemen-

tioned issues with BitTorrent, ZeroNet turned out unable to support the

responsiveness that users of modern web services have come to expect.

In an effort to enable responsive, distributed web applications (or dapps),

the InterPlanetary File System or IPFS (IPFS 2014) introduced their own

major improvements over BitTorrent. One stand-out feature was the

highly web-compatible, URL-based retrieval scheme. In addition, the

directory of the available data, the indexing, (like BitTorrent organised

as a DHT) was vastly improved, allowing users to also search for small

parts of any file, known as chunks.

There are numerous other efforts to fill the gap and provide a worthy

Web 3.0 surrogate for the constellation of servers and services that

Web 2.0 developers have come to expect—to offer a path to emanci-

pation from the existing dependency on centralised architecture that

enables the data reapers. These are not insignificant roles to supplant,

as even the simplest web app today relies on a vast array of concepts

and paradigms which have to be remapped into the trustless setting of

Web 3.0. In many ways, this problem is proving to be perhaps even more

nuanced than implementing trustless computation on the blockchain.

Swarm responds to this with a variety of carefully designed data struc-

tures that enable application developers to recreate familiar Web 2.0

concepts. Swarm reimagines the current offerings of the web and re-

implements them based on solid cryptoeconomic foundations.

CHAPTER 1. THE EVOLUTION 15

Imagine a sliding scale, starting on the left with large file size, low fre-

quency of retrieval, and a monolithic API. To the right are small data

packets, high frequency of retrieval, and a nuanced API. On this spec-

trum, file storage and retrieval systems like a posix filesystem, S3, Storj,

and BitTorrent live on the left hand side. Key–value stores like LevelDB

and databases like MongoDB or Postgres live on the right. Building a

useful app requires different modalities scattered across the scale. Fur-

thermore, there must be the ability to combine data where necessary

and ensure only authorised parties have access to protected data. In

the centralised model, handling these problems initially is easy, but

gets more difficult with growth, and each range of the scale has a solu-

tion from one piece of specialised software or another. However, in the

decentralised model, all bets are off. Authorisation must be handled

with cryptography, limiting the combination of data. As a result, in the

nascent, evolving Web 3.0 stack of today, many solutions deal piecemeal

with only part of this spectrum of requirements. In this book, you will

learn how Swarm spans the entire spectrum while providing high-level

tools for the new guard of Web 3.0 developers. The hope is that from

an infrastructure perspective, working on Web 3.0 will feel like the hal-

cyon days of Web 1.0, while delivering unprecedented levels of agency,

availability, security, and privacy.

To address the need for privacy to be baked in at the core level in file-

sharing—as it is so effectively attained in Ethereum—Swarm enforces

anonymity at an equally fundamental and absolute level. Lessons from

Web 2.0 have taught us that trust should be given responsibly and only

to those that are deserving of it and will treat it with respect. Data is toxic

(Schneier 2019), and we must treat it delicately in order to be responsible

to ourselves and to those for whom we take responsibility. Later, we will

explain how Swarm provides complete and fundamental user privacy.

Of course, to fully transition to a Web 3.0-decentralised world, we must

address the dimensions of incentives and trust, which are traditionally

"solved" by handing over responsibility to (often untrustworthy) cen-

tralised gatekeepers. As we have noted, BitTorrent also grappled with

this problem and responded with various seed ratios and private (i.e.,

centralised) trackers.

16 CHAPTER 1. THE EVOLUTION

The problem of lacking incentives for reliably hosting and storing con-

tent is apparent in various projects like ZeroNet or MaidSafe. Incentivis-

ing distributed document storage is still a relatively new research field,

especially in the context of blockchain technology. The Tor network

has seen suggestions for incentivisation schemes (Jansen et al. 2014,

Ghosh et al. 2014) but they have mostly been academic exercises and

not integrated into the heart of the underlying system. Bitcoin has been

repurposed to drive other systems like Permacoin (Miller et al. 2014),

while some have created their own blockchain, such as Sia (Vorick and

Champine 2014) or Filecoin (2014) for IPFS. BitTorrent is currently test-

ing the waters of blockchain incentivisation with its own token (Tron

Foundation 2019, BitTorrent Foundation 2019). However, even with

all of these approaches combined, many hurdles remain to fulfil the

specific requirements of a Web 3.0 dapp developer.

Later on, we will explore how Swarm provides a full suite of incentivisa-

tion measures and implements other checks and balances to ensure that

nodes work together for the benefit the entire... swarm. This includes

the option to rent out large amounts of disk space to those willing to

pay for it—irrespective of the popularity of their content—while also

enabling the deployment of interactive dynamic content to be stored in

the cloud, a feature we call upload and disappear.

The objective of any incentive system for peer-to-peer content distribu-

tion is to encourage cooperative behaviour and discourage freeriding:

the uncompensated depletion of limited resources. The incentive strat-

egy outlined here aspires to satisfy the following constraints:

— it is in the node’s own interest, regardless of whether or not other

nodes follow it

— it must be expensive to expend the resources of other nodes

— it does not impose unreasonable overhead

— it plays nice with "naive" nodes

— it rewards those that play nice, including those following this

strategy

In the context of Swarm, storage and bandwidth are the two most im-

portant scarce resources, and this is reflected in our incentives scheme.

CHAPTER 1. THE EVOLUTION 17

Bandwidth incentives aim to achieve speedy and reliable data provi-

sion, while storage incentives are designed to ensure long-term data

preservation. This comprehensive approach caters to all web appli-

cation development requirements and aligns incentives so that each

individual node’s actions benefit not only itself, but the whole of the

network.

1.2 Fair data economy

In the era of Web 3.0, the Internet is no longer just a niche space where

geeks play, but has become a vital conduit of value creation and has

generated a huge share of overall economic activity. Yet, the data econ-

omy in its current state is far from fair, as the distribution of the spoils is

controlled by those who control the data—mostly companies keeping

it to themselves in isolated data silos. To achieve the goal of a fair data

economy, many social, legal, and technological issues will have to be

tackled. We will now present some of the issues as they currently exist,

and describe how Swarm aims to address them.

1.2.1 The current state of the data economy

Digital mirror worlds already exist—virtual expanses that contain shad-

ows of physical things, consisting of unimaginably large amounts of

data (Economist 2020a). As more and more data continues to be synced

to these parallel worlds, new infrastructure, markets, and business op-

portunities arise. Only relatively crude methods exist for measuring

the size of the data economy as a whole, but one estimate places the

financial value of data (including related software and intellectual prop-

erty) in the USA at $1.4 trillion to 2 trillion in 2019 (Economist 2020a).

The EU Commission projects the figures for the data economy in the

EU27 for 2025 at €829 billion (up from €301 billion in 2018; European

Commission 2020a).

Despite this huge amount of value, the asymmetric distribution of the

wealth generated by the existing data economy has been put forward

as a major humanitarian issue (Economist 2020c). While unceasing

18 CHAPTER 1. THE EVOLUTION

increases in quality and quantity of data have led to ever-greater levels

of efficiency and productivity, the resulting profits have been distributed

unequally. The larger the company’s data set, the more it can learn from

the data, the more users it can attract, and the more data it can accu-

mulate. Currently, this is most apparent with the dominating large tech

companies such as FAANG, but it is predicted to become increasingly

significant in non-tech sectors and even in nation states. Hence, compa-

nies are racing to become dominant in their respective sectors, granting

an advantage to the countries hosting these platforms. Since Africa

and Latin America host so few of these, they risk becoming exporters

of raw data and paying other countries to import the intelligence de-

rived from it, as warned by the United Nations Conference on Trade and

Development (Economist 2020c). Another problem arises when a large

company monopolises a particular data market, as it can become the

sole purchaser of data, exerting complete control over price setting. This

control opens up the possibility of manipulating the "wages" offered for

providing data, thereby keeping them artificially low. In many ways, we

are already seeing evidence of this.

Flows of data are becoming increasingly blocked and filtered by govern-

ments, using the familiar reasoning based on the protection of citizens,

sovereignty, and national economy (Economist 2020b). Leaks by several

security experts reveal that for governments to properly give consider-

ation to national security, data should be kept close to home and not

left to reside in other countries. GDPR is one such instance of a "digital

border" that has been erected—data may leave the EU only if appro-

priate safeguards are in place. Other countries, such as India, Russia,

and China, have implemented their own geographic limitations on data.

The EU Commission has pledged to closely monitor the policies of these

countries and address any restrictions to data flows during trade nego-

tiations. Additionally, the EU Commission takes necessary measures

within the World Trade Organization (European Commission 2020b) to

advocate for fair and unrestricted data exchange practices.

Despite the growing interest in the ebb and flow of data, the big tech

corporations maintain a firm grip on much of it, and the devil is in the

details. Swarm’s privacy-first model ensures that no data needs to be

CHAPTER 1. THE EVOLUTION 19

divulged to any third parties, and everything is end-to-end encrypted

out of the box, preventing service providers from aggregating and lever-

aging giant data sets. As a result, instead of being concentrated with the

service provider, control of the data remains decentralised and with the

individual to whom it pertains. And with that, so does the power. Expect

bad press.

1.2.2 The current state and issues of data sovereignty

As a result of the Faustian bargain described above, the current model

of the World Wide Web suffers from several flaws. Unforeseen circum-

stances of economies of scale in infrastructure provisioning and network

effects in social media have turned platforms into massive data silos,

holding large amounts of user data that are retained, shared, or deleted

at the whim of a single organisation. This ’side effect’ of the centralised

data model empowers large private corporations to collect, aggregate,

and analyse user data with their data siphons positioned right at the

central bottleneck—the cloud servers where everything meets. This is

exactly what David Chaum predicted in 1984, which ignited the Cypher-

punk movement, serving as a vital inspiration for Swarm.

The increasing shift from human-mediated interactions to computer-

mediated ones, combined with the rise of social media and smart-

phones, has led to more and more information about our personal

and social lives becoming readily accessible to the companies provision-

ing the data flow. They have access to lucrative data markets where user

demographics are linked with underlying behaviours, enabling them to

understand users better than they understand themselves. This is the

ultimate treasure trove for marketeers.

Data companies, including large tech corporations and other entities

involved in collecting, aggregating, and analysing vast amounts of user

data, have meanwhile evolved their business models, now focusing

on capitalising on data sales rather than the service they initially pro-

vided. Their primary source of revenue is now selling the results of user

profiling to advertisers, marketeers, and others who seek to "nudge"

members of the public. The cycle is continued through eerily tailored

20 CHAPTER 1. THE EVOLUTION

advertisements served to users on the same platforms, measuring their

reaction, and using their reactions to better elicit the desired behaviour

in future advertisements, thus creating an unending feedback loop. A

whole new industry has grown out of this torrent of information, sophis-

ticated systems have emerged to predict, guide, and influence users to

capture their attention and money. The industry openly and knowingly

exploits human cognitive biases, often resorting to highly developed

and cynically calculated psychological manipulation. The undisputable

truth is that mass manipulation in the name of commerce has led to our

modern reality where not even the most aware can truly exercise their

freedom of choice and preserve their intrinsic autonomy of preference

regarding consumption of content, goods, and services.

The shift in the platforms’ focus towards advertisements rather than

their intended primary purposes is also reflected in the declining quality

of service for users. The needs of users have become secondary to

the needs of the "real" customers: the advertisers. This declining user

experience and quality of service is exacerbated in the case of social

platforms where the inertia of network effect promotes user lock-in.

Correcting these misaligned incentives is imperative to providing users

with the same services without the unfortunate incentives inevitably

resulting from the centralised data model.

Moreover, the lack of control over one’s data has serious consequences

on the economic potential of the users. Some refer to this situation,

somewhat hysterically, as data slavery. But they are technically correct:

our digital twins are held captive by these corporations and exploited

for revenue generation. As users, we give up a great deal of agency,

as the data we freely share is used to manipulate us and make us less

well-informed and free.

The current system of keeping data in disconnected data sets has various

drawbacks:

Unequal opportunity

Centralised entities increase inequality as they siphon away a dis-

proportionate amount of profit from the actual creators of the value.

CHAPTER 1. THE EVOLUTION 21

Lack of fault tolerance

These datasets have a single point of failure in terms of technical

infrastructure, notably security.
Corruption

The concentration of decision-making power makes these datasets

easier targets for social engineering, political pressure, and institu-

tionalised corruption.
Single attack target

The concentration of large amounts of data under the same secu-

rity system attracts attacks as it increases the potential reward for

hackers.
Lack of service continuity guarantees

Service continuity is in the hands of the organisation and is only

weakly incentivised by reputation. This introduces the risk of inad-

vertent termination of service due to bankruptcy or regulatory/legal

action.
Censorship

Centralised control of data access allows for, and in most cases

eventually leads to, decreased freedom of expression.

Surveillance
Data flowing through centrally-owned infrastructure offers perfect

access to traffic analysis and other methods of monitoring.
Manipulation

Monopolisation of the display layer enables data harvesters to ma-

nipulate opinions by controlling the presentation, order, and timing

of data, calling into question the sovereignty of individual decision-

making.

1.2.3 Towards self-sovereign data

We believe that decentralisation is a game-changer that effectively ad-

dresses many of the problems listed above.

We argue that blockchain technology is the final missing piece in the

puzzle to realise the cypherpunk ideal of a truly self-sovereign Internet.

As outlined in the Cypherpunk Manifesto by Eric Hughes in 1993 (Hughes

22 CHAPTER 1. THE EVOLUTION

1993), "We must come together and create systems which allow anony-

mous transactions." One of the goals of this book is to demonstrate

how decentralised consensus and peer-to-peer network technologies

can be combined to form a rock-solid base-layer infrastructure. This

foundation is not only resilient, fault tolerant and scalable, but also

egalitarian and economically sustainable with a well-designed system

of incentives. The low barrier of entry for participants ensures adaptive

incentives, leading to prices that automatically converge to the marginal

cost. On top of this, add Swarm’s strong value proposition in the domain

of privacy and security.

Swarm is a Web 3.0 stack that is decentralised, incentivised, and secure.

In particular, the platform caters to participants with comprehensive

solutions for data storage, transfer, access, and authentication—services

that are becoming increasingly crucial in economic interactions. Of-

fering universal access with robust privacy guarantees and no limita-

tions from borders or external restrictions, Swarm fosters the spirit of

global voluntarism and serves as the foundational infrastructure for a

self-sovereign digital society.

1.2.4 Artificial intelligence and self-sovereign data

Artificial Intelligence (AI) holds great promise for our society, bringing

new business opportunities and augmenting the tool sets used by vari-

ous professions. On the one hand, it also poses a potential threat as it

might displace certain professions and jobs (Lee 2018).

For the prevalent type of AI, machine learning (ML), particularly deep

learning, three essential "ingredients" are required: computing power,

models, and data. Today, computing power is readily available, and

specialised hardware is being developed to further facilitate processing.

An extensive headhunt for AI talent has been taking place for more than

a decade, and a few companies have managed to corner the market for

workers with the specialised talents needed to build models and analyse

data. However, the dirty secret of today’s AI, and deep learning, is that

the algorithms, the ’intelligent math’ is already commoditised. It is Open

Source and freely available to everyone. It is not what Google or Palantir

CHAPTER 1. THE EVOLUTION 23

make their money with. The true ’magic trick’ of these companies lies

in getting access to the largest possible data sets to unleash the full

potential of their AI systems for profitable gains.

The major players in the data economy have been systematically amass-

ing vast amounts of data. They often offer free applications with some

utility such as search engines or social media platforms, while secretly

collecting and stockpiling user data without explicit consent or aware-

ness. This monopoly on data has allowed multinational companies to

make unprecedented profits, with only feeble motions to share the finan-

cial proceeds with the individuals whose data they have sold. Potentially

much worse though, this hoarded data remains untapped, depriving

both individuals and society as a whole of its potential transformative

value.

It is perhaps not a coincidence that the major data and AI "superpowers"

are the American and Chinese governments, along with major corpora-

tions within their respective borders. An AI arms-race is unfolding in full

view of the citizens of the world, leaving most other countries lagging

behind as "data colonies" (Harari 2020). There are warnings that the

current trajectory will lead to China and the United States accumulating

an insurmountable advantage as AI superpowers (Lee 2018).

It doesn’t have to be so. In fact, it likely won’t because the status quo is

a bad deal for billions of people. Decentralised technologies and cryp-

tography offer a path towards data privacy while nurturing a fair data

economy that retains the benefits of the current centralised system but

without its pernicious drawbacks. This is the goal that many consumer

and tech organisations across the globe are aiming for. They are working

to support the push-back against the big data behemoths as more users

begin to realise that they have been swindled into giving away their

data. Swarm’s infrastructure will play a pivotal role in facilitating this

liberation.

Self-sovereign storage might well be the only way that individuals can

reclaim control over their data and privacy. It is the first step towards

breaking free from filter bubbles and reconnecting with one’s own cul-

ture. Addressing various challenges of today’s Internet and the distri-

24 CHAPTER 1. THE EVOLUTION

bution and storage of data, Swarm is built for privacy from the ground

up, incorporating powerful data encryption and ensuring secure and

completely leak-proof communication. Furthermore, it enables users

to selectively share specific data with third parties at their discretion, al-

lowing for the possibility of financial compensation in return. Payments

and incentives are therefore also integral aspects of Swarm.

As Hughes wrote, "privacy in an open society requires anonymous trans-

action systems. ... An anonymous transaction system is not a secret

transaction system. An anonymous system empowers individuals to

reveal their identity when desired and only when desired; this is the

essence of privacy."

Using Swarm enables leveraging a fuller set of data to create better

services while still having the option to contribute to the global good

with self-verifiable anonymisation. It’s the best of all worlds.

This newfound availability of data, benefitting young academic students

and startups with disruptive ideas in the AI and big-data sectors, has

immense potential to drive advancements in the entire field. This holds

great promise for progress in science, healthcare, the eradication of

poverty, environmental protection, disaster prevention, and more. How-

ever, despite the eye-catching successes attracting robber barons and

rogue states, many sub-fields are currently facing challenges and stag-

nation. Swarm’s data liberation has the potential to break this impasse

and unleash the sector’s contributions to various domains.

The facilities that Swarm provides will open up a new set of powerful

options for companies and service providers. With the widespread

decentralisation of data, we can collectively own the extremely large and

valuable data sets that are needed to build state-of-the-art AI models.

Embracing data portability, a trend already hinted at in traditional tech,

will foster competition and personalised services for individuals. The

playing field will be levelled for all, driving innovation in line with the

demands of the twenty-first century’s third decade.

CHAPTER 1. THE EVOLUTION 25

1.2.5 Collective information

While collective information has been steadily accumulating since the

inception of the Internet, the concept has only recently gained recog-

nition and is now being discussed under a variety of headings such as

open source, fair data, or information commons.

A collective, as defined by Wikipedia, is:

"A group of entities that share or are motivated by at least

one common issue or interest, or work together to achieve a

common objective."

The internet allows the formation of collectives on a previously unthink-

able scale, transcending geographical location, political convictions,

social status, wealth, even general freedom, and other demographics.

The data produced by these collectives through interactions on pub-

lic forums, reviews, votes, code repositories, articles, and polls, along

with the emergent metadata, all contribute to collective information.

Since most of these interactions are currently facilitated by for-profit

entities running centralised servers, the collective information ends up

stored in data silos owned by commercial entities, often concentrated

in the hands of a few large technology companies. And while the actual

work results are often in the open, the metadata, which can often be

more valuable, powerful, and potentially dangerous, is usually held and

monetised in secrecy.

These "platform economies" have already become essential and are

only becoming ever more important in a digitised society. However,

the information that commercial players acquire about their users is

increasingly being leveraged against the users’ best interests. To put it

mildly, this calls into question whether these corporations can handle

the ethical responsibility that comes with the power of managing our

collective information.

While many state actors are trying to obtain unfettered access to the col-

lective mass of individuals’ personal data, with some countries going as

far as demanding magic key-like back-door access, there are exceptions.

26 CHAPTER 1. THE EVOLUTION

Since AI has the potential for misuse and ethically questionable use, a

number of countries have started "ethics" initiatives, regulations, and

certifications for AI use, such as the German Data Ethics Commission or

Denmark’s Data Ethics Seal.

Yet, even if corporations could be made to act more trustworthy, as

would be appropriate in light of their great responsibility, the mere exis-

tence of data silos stifles innovation. The basic shape of the client-server

architecture itself has led to this problem by defaulting to centralised

data storage on "servers" within their "farms" (see 1.1.1 and 1.1.2). In

contrast, effective peer-to-peer networks like Swarm (1.1.3) make it

possible to alter the very topology of this architecture, enabling the

collective ownership of collective information.

1.3 The vision

Swarm is infrastructure for a self-sovereign society.

1.3.1 Values

Self-sovereignty implies freedom. If we break it down, this implies the

following metavalues:

Inclusivity

public and permissionless participation
Integrity

privacy, provable provenance

Incentivisation
alignment of interest of node and network

Impartiality

content and value neutrality

These metavalues can be thought of as systemic qualities which con-

tribute to empowering individuals and collectives to gain self-sovereignty.

Inclusivity means that we aspire to include the underprivileged in the

data economy and lower the barrier of entry for defining complex data

flows and building decentralised applications. Swarm is a network with

CHAPTER 1. THE EVOLUTION 27

open participation for providing services and permissionless access to

publishing, sharing, and investing your data.

While having the freedom to express their intentions as "actions" and

retain full authority to decide if they want to remain anonymous or share

their interactions and preferences, users must also uphold the integrity

of their online persona.

Economic incentives ensure that participants’ behaviour align with the

desired emergent behaviour of the network (see 3).

Impartiality guarantees the neutrality of content and prevents gate-

keeping. It also reaffirms that the other three values are not only nec-

essary but also sufficient: it eliminates any values that may treat any

particular group as privileged or express a preference for specific content

or data from a particular source.

1.3.2 Design principles

The information society and its data economy bring about an age where

online transactions and big data are indispensable to everyday life, mak-

ing the technical infrastructure supporting them essential for a func-

tional society. It is imperative therefore, that this base-layer infrastruc-

ture be future-proof and equipped with robust guarantees for long-term

continuity.

Persistence of the technical infrastructure is achieved by the following

generic requirements expressed as systemic properties:

Stable
The specifications and software implementations are stable and

resilient to changes in participation, or politics (political pressure,

censorship).

Scalable
The solution is able to accommodate many orders of magnitude

more users and data as it scales, without adversely impacting per-

formance or reliability during mass adoption.

28 CHAPTER 1. THE EVOLUTION

Secure
The network is resistant to deliberate attacks, remains impervious

to social pressure and political influences, and demonstrates fault

tolerance in its technological dependencies (e.g. blockchain, pro-

gramming languages).
Self-sustaining

The solution runs by itself as an autonomous system, not depending

on individual or organisational coordination of collective action or

any legal entity’s business, nor exclusive know-how, hardware, or

network infrastructure.

1.3.3 Objectives

When we talk about the "flow of data," a core aspect of this is how

information has provable integrity across modalities, see Table 1.1. This

corresponds to the original Ethereum vision of the world computer,

constituting the trust-less (i.e. fully trustable) fabric of the coming data

scene: a global infrastructure that supports data storage, transfer, and

processing.

dimension model project area

time memory storage

space messaging communication

symbolic manipulation processing

Table 1.1: Swarm’s scope and data integrity aspects across 3 dimensions.

With the Ethereum blockchain as the CPU of the world computer, Swarm

is best thought of as its "hard disk". Of course, this model belies the

complex nature of Swarm, which is capable of much more than simple

storage, as we will discuss.

The Swarm project sets out to bring this vision to completion and build

the world computer’s storage and communication.

CHAPTER 1. THE EVOLUTION 29

1.3.4 Impact areas

In what follows, we identify feature areas of the product that best express

or facilitate the four values of inclusivity, integrity, incentivisation, and

impartiality introduced above.

Inclusivity in terms of permissionless participation is best guaranteed

by a decentralised peer-to-peer network.

Allowing nodes to provide service and get paid for doing so will offer

a zero-cash entry to the ecosystem: new users without currency can

serve other nodes until they accumulate enough currency to use services

themselves. A decentralised network providing distributed storage with-

out gatekeepers is also inclusive and impartial in that it allows content

creators, who would otherwise risk being deplatformed by repressive

authorities, to publish without their right to free speech being violated.

The system of economic incentives built into the protocols works best

if it tracks the actions that incur costs in the context of peer-to-peer in-

teractions. Bandwidth sharing as evidenced in message relaying is one

such action where immediate accounting is possible as a node receives

a message that is valuable to them. On the other hand, promissory ser-

vices such the commitment to preserve data over time must be rewarded

only upon verification. In order to avoid the tragedy of the commons

problem, such promissory commitments should be guarded against

by enforcing individual accountability through the threat of punitive

measures, i.e. by allowing staked insurers.

Integrity is maintained by ensuring easy provability of authenticity while

still maintaining anonymity. Provable inclusion and uniqueness are

fundamental to allowing trustless data transformations.

1.3.5 The future

In today’s digital society, many challenges lie ahead for humanity, leav-

ing the future uncertain. Nonetheless, to be sovereign and in control

of our destinies, nations and individuals alike must retain access and

control over their data and communication.

30 CHAPTER 1. THE EVOLUTION

Swarm’s vision and objectives are rooted in the values of the decen-

tralised tech community. Originally conceived as the file storage com-

ponent in the trinity which would form the world computer alongside

Ethereum and Whisper, Swarm embraces its role in building a resilient

decentralised digital ecosystem.

It provides the necessary responsiveness for dapps running on users’

devices, while also offering incentivised storage utilising various storage

infrastructures ranging from smartphones to high-availability clusters.

Continuity will be guaranteed with well-designed incentives for band-

width and storage.

Content creators will receive fair compensation for the content they

offer, and content consumers will pay for it. By eliminating the mid-

dlemen providers who currently benefit from the network effects, the

benefits will be spread throughout the network.

But it will be much more than that. Every individual and every device

leaves a trail of data, which is collected and stored in silos, whose poten-

tial is used up only in part and to the benefit of large players.

Swarm will serve as the go-to platform for digital mirror worlds, provid-

ing individuals, societies, and nations with a cloud storage solution that

is independent of any one large provider.

Individuals will have full control over their own data. They will no

longer be trapped in the current system of data slavery, where personal

data is exchanged for services on opaque and exploitative platforms.

Moreover, they will be able to form data collectives or data co-operatives,

sharing their resources in the form of data commons to achieve shared

objectives.

Nations will establish self-sovereign Swarm clouds as data spaces to

cater to the emerging artificial intelligence paradigm—in industry, health,

mobility, and other sectors. These clouds will operate in a peer-to-peer

manner, potentially within exclusive regions, and third parties will not

be able to interfere by monitoring, censoring, or manipulating the flow

of data. However, authorized parties will have access to the data, aiming

to level the playing field for AI and services based on it.

CHAPTER 1. THE EVOLUTION 31

Swarm can, paradoxically, serve as the "central" place to store data.

Embracing this technology will empower individuals and society with

robust accessibility, control, and fair value distribution of data, allowing

for the leveraging of data for the collective benefit of all.

In the future society, Swarm will become ubiquitous, transparently and

securely serving data from individuals and devices to data consumers

within the fair data economy.

32 CHAPTER 1. THE EVOLUTION

Part II

Design and architecture

33

35

The Swarm project is set out to build a permissionless storage and com-

munication infrastructure for the self-sovereign digital society of to-

morrow. From a developer’s perspective, Swarm is best seen as public

infrastructure that powers real-time interactive web applications famil-

iar from the Web 2.0 era. It provides a low-level API to primitives that

serve as building blocks of complex applications, as well as the basis for

the tools and libraries for a Swarm-based Web 3.0 development stack.

Designed to allow access from any traditional web browser, the API and

tools ensure that Swarm can swiftly offer a private and decentralised

alternative to today’s World Wide Web (WWW).

Figure 1.1: Swarm’s layered design

This part details the design and architecture of the system. In accor-

dance with the principles laid out in 1.3.2, we prioritise a modular design

approach for Swarm, conceiving it with clearly separable layers, each

dependent on the previous one (see Figure 1.1):

(1) A peer-to-peer network protocol to serve as underlay transport.

(2) An overlay network with protocols powering a distributed im-

mutable storage of chunks (fixed size data blocks).

(3) A component providing high-level data access and defining APIs

for base-layer features.

(4) An application layer defining standards and outlining best prac-

tices for more elaborate use-cases.

We regard (2) and (3) as the core of Swarm. Since the network layer relies

on it, we will also formulate the requirements for (1), but consider the

detailed treatment of both (1) and (4) outside the scope of this book.

Central to the design is the architecture of Swarm’s overlay network

(layer 2 in Figure 1.1), which is discussed in Chapter 2. Chapter 3 com-

36

plements this by describing the system of economic incentives which

makes Swarm self-sustaining. In Chapter 4, we introduce the algorithms

and conventions that allow Swarm to map data concepts onto the chunk

layer to enable the high-level functionalities for storage and communi-

cation, notably data structures such as filesystems and databases, access

control, indexed feeds, and direct messaging which comprise layer 3

of Swarm. In Chapter 5, we present ways to prevent garbage-collected

chunks from disappearing from the network, including: erasure codes,

pinning and insurance, and also provide ways to monitor, recover and

re-upload them using missing chunk notifications and insurance chal-

lenges. Finally, in Chapter 6, we will look at functionality from the

perspective of the developer who builds on Swarm.

2. NETWORK

This chapter elaborates on how the Swarm overlay network is built on

top of a peer-to-peer network protocol to form a topology that allows

for the routing of messages between nodes (2.1). In 2.2, we describe how

such a network can serve as a scalable distributed storage solution for

data chunks (2.2.1) and present the logic underpinning the protocols

for retrieval/download and syncing/upload (2.3).

2.1 Topology and routing

This section sets the scene (2.1.1) for the overlay network of Swarm by

making explicit the assumptions about the underlay network. 2.1.2 in-

troduces the overlay address space and explains how nodes are assigned

an address. In 2.1.3, we present the Kademlia overlay topology (connec-

tivity pattern) and explain how it solves routing between nodes. In 2.1.4,

we show how nodes running the Swarm client can discover each other,

bootstrap, and then maintain the overlay topology.

2.1.1 Requirements for underlay network

Swarm is a network operated by its users. Each node in the network is

supposed to run a client complying with the protocol specifications. On

the lowest level, the nodes in the network connect using a peer-to-peer

network protocol as their transport layer. This is called the underlay net-

work. In its overall design, Swarm is agnostic of the particular underlay

transport used as long as it satisfies the following requirements:

37

38 CHAPTER 2. NETWORK

Addressing

Nodes are identified by their underlay address.
Dialling

Nodes can initiate a direct connection to a peer by dialing them on

their underlay address.
Listening

Nodes can listen to other peers dialing them and can accept incom-

ing connections. Nodes that do not accept incoming connections

are called light nodes.

Live connection
A node connection establishes a channel of communication, indi-

cating that the remote peer is online and accepting messages until

explicitly disconnected.
Channel security

The channel provides identity verification and implements encrypted

and authenticated transport resisting man-in-the-middle attacks.
Protocol multiplexing

The underlay network service can accommodate several protocols

running on the same connection. Peers communicate the protocols

with the name and versions that they implement, and the underlay

service identifies compatible protocols and starts up peer connec-

tions on each matched protocol.
Delivery guarantees

Protocol messages have guaranteed delivery, i.e. any delivery fail-

ures due to network problems prompt direct error responses. The

sequence in which messages are delivered is guaranteed within

each protocol, and ideally, the underlay protocol provides prioriti-

sation. If protocol multiplexing takes place on the same transport

channel, framing is likely implemented to prevent long messages

from blocking higher-priority ones.

Serialisation
The protocol message construction supports arbitrary data struc-

ture serialisation conventions.

CHAPTER 2. NETWORK 39

The libp2p library can provide all the needed functionality and is the

designated underlay connectivity driver in the specification.1

2.1.2 Overlay addressing

While clients use the underlay address to establish connections to peers,

each node running Swarm is additionally identified with an overlay

address. It is this address that determines which peers a node will

connect to and also directs the way messages are forwarded. The overlay

address is assumed to be stable as it defines a node’s identity across

sessions and ultimately affects which content is prioritised for storage

in the node’s local storage.

The node’s overlay address is derived from an Ethereum account by

hashing the corresponding elliptic curve public key with the bzz net-

work ID using the 256-bit Keccak algorithm. The inclusion of the bzz

network ID is rooted in the fact that there can be multiple Swarm net-

works (e.g. test net, main net, or private Swarms). It serves to ensure that

the same address cannot be used across different networks. Assuming

any sample of base accounts are independently selected, the resulting

overlay addresses are expected to have a uniform distribution in the

address space of 256-bit integers. It is important to derive the address

from a public key, as it allows the nodes to issue commitments associ-

ated with an overlay location using cryptographic signatures that are

verifiable by third parties.

Using the long-lived communication channels of the underlay network,

Swarm nodes form a network with quasi-permanent peer connections.

1Swarm’s initial Golang implementation uses Ethereum’s devp2p/rlpx which satisfies

the above criteria and uses TCP/IP with custom cryptography added for security.

The underlay network address that devp2p uses is represented using the enode URL

scheme. Devp2p dispatches protocol messages based on their message ID. It uses RLP

serialisation which is extended with higher level data type representation conventions.

In order to provide support for the Ethereum 1.x blockchain and for storing its state

on Swarm, we may provide a thin devp2p node that proxies queries to the new libp2p-

based Swarm client, or just uses its API. Otherwise we expect the devp2p networking

support to be discontinued.

40 CHAPTER 2. NETWORK

The resulting connectivity graph can then realise a particular topology

defined over the address space. The overlay topology chosen is called

Kademlia: It enables communication between any two arbitrary nodes

in the Swarm network by providing a strategy to relay messages using

only underlay peer connections. The protocol that describes how nodes

share information with each other about themselves and other peers

is called ’hive’. How nodes use this protocol to bootstrap the overlay

topology is discussed in 2.1.4.

It is crucial that the overlay address space encompasses the full range

of 256-bit integers. One central concept in Swarm is proximity order

(PO), which quantifies the relatedness of two addresses on a discrete

scale.2 Given two addresses, x and y , PO(x, y) counts the matching bits

of their binary representation starting from the most significant bit up

to the first one that differs. The highest proximity order is therefore 256,

designating the maximum relatedness, i.e. where x = y .

2.1.3 Kademlia routing

Kademlia topology can be used to route messages between nodes in a

network using overlay addressing. It has excellent scalability as it allows

for universal routing such that both (1) the number of hops and (2) the

number of peer connections are always logarithmic to the size of the

network.

In what follows, we show the two common flavours of routing: iterative/-

zooming and recursive/forwarding. Swarm’s design crucially relies on

the latter, forwarding flavour, which sets it apart as a less common ap-

proach compared to the more prevalent iterative flavour found in much

of the peer-to-peer literature and used in most other implementations

(see Maymounkov and Mazieres 2002, Baumgart and Mies 2007, Lua

et al. 2005). To provide a comprehensive understanding, we will walk

the reader through both approaches to reveal their idiosyncrasies.

2Proximity order is the discrete logarithmic scale of proximity, which, in turn is the

inverse of normalised XOR distance.

CHAPTER 2. NETWORK 41

Iterative and forwarding Kademlia

Let R be an arbitrary binary relation over nodes in a network. Nodes

that are in relation R with a particular node x are called peers of x.

Peers of x can be indexed by their proximity order (PO) relative to x.

The equivalence classes of peers are called proximity order bins, or just

bins for short. Once arranged in bins, these groups of peers form the

Kademlia table of the node x (see Figure 2.1).

Node x has a saturated Kademlia table if there is a 0 ≤ dx ≤ maxPO

called the neighbourhood depth such that (1) the node has at least one

peer in each bin up to and excluding proximity order bin dx and (2) all

nodes at least as near as dx (called the nearest neighbours) are peers of

x. If each node in a network has a saturated Kademlia table, then we say

that the network has Kademlia topology.

Let R be the "is known to" relation: y "is known to" x if x has both over-

lay and underlay addressing information for y . In iterative Kademlia

routing, the requestor node iteratively extends the graph of peers that

are known to it. Using their underlay address, the requestor node will

contact the peers that they know are nearest the destination address for

peers that are further away (commonly using UDP). On each successive

iteration, the peers become at least one order closer to the destination

(see Figure 2.3). Because of the Kademlia criteria, the requestor will

eventually discover the destination node’s underlay address and can

then establish direct communication with it. This iterative strategy3

critically depends on the nodes’ ability to find peers that are currently

online. In order to find such a peer, a node needs to collect several can-

didates for each bin. The best predictor of availability is the recency of

the peer’s last response, so peers in a bin should be prioritised according

to this ordering.

Swarm uses an alternative flavour of Kademlia routing, first described

in Heep (2010) and then expanded on and worked out by Trón et al.

3The iterative protocol is equivalent to the original Kademlia routing that is described

in Maymounkov and Mazieres (2002).

42 CHAPTER 2. NETWORK

Figure 2.1: From overlay address space to Kademlia table. Top: the overlay

address space is represented with a binary tree, colored leaves are actual nodes.

The path of the pivot node (+) is shown with thicker lines. Centre: peers of the

pivot nodes are shown keyed by the bits of their xor distance measured from the

pivot. Here, 0s represent a matching bit with the pivot, and 1s show a differing

bit. The leaf nodes are ordered by their xor distance from the pivot (leftmost

node). Bottom: the Kademlia table of the pivot: the subtrees branching off from

the pivot path on the left are displayed as the rows of the table representing

proximity order bins in increasing order.

CHAPTER 2. NETWORK 43

Figure 2.2: Nearest neighbours in a 4 bit network with d = 2

(2019b). Here, a recursive method is employed, whereby the successive

steps of the iteration are "outsourced" to a downstream peer. Each

node recursively passes a message to a direct peer at least one proximity

order closer to the destination. Thus, routing using this approach simply

means relaying messages via a chain of peers which are ever closer to

the destination, as shown in Figure 2.3.

In this way, Swarm’s underlay transport offers quasi-stable peer con-

nections over TCP with communication channels that are kept alive.

These open connections can then be used as R to define another notion

of a peer. The two criteria of healthy Kademlia connectivity in Swarm

translate as: For each node x, there exists a neighbourhood depth dx

such that (1) node x has an open connection with at least one node for

each proximity order bin up to but excluding dx , and (2) is connected to

all the online nodes that are at least as near as dx . If each node in the

network has a saturated Kademlia table of peers, then the network is

said to have Kademlia topology. Since connected peers are guaranteed

to be online, the recursive step consists solely of forwarding the message

to a connected peer strictly closer to the destination. We can call this

alternative forwarding Kademlia.

44 CHAPTER 2. NETWORK

Figure 2.3: Iterative and Forwarding Kademlia routing: A requestor node shown

with a cross in the circle at address ...0000... wants to route to a destination

address ...1111... to which the closest peer online is the blue circle at ...1110...

These initial ellipses represent the prefix shared by requestor and destination

addresses which is n bits long. Top: In the iterative flavour, the requestor

contacts the peers (Step 1, dotted black arrows) that they know are nearest the

destination address. Peers that are online (yellow) respond with information

about nodes that are even closer (green arrow, Step 2) so the requestor can now

repeat the query using these closer peers (green, Step 3). On each successive

iteration, the peers (yellow, green and blue) are at least one PO closer to the

destination until eventually the requestor is in direct contact with the node that

is nearest to the destination address. Bottom: In the forwarding flavour, the

requestor forwards a message to the connected peer they know that is nearest

to the destination (yellow). The recipient peer does the same. Applying this

strategy recursively relays the message via a chain of peers (yellow, green, blue)

each at least one PO closer to the destination.

CHAPTER 2. NETWORK 45

In a forwarding Kademlia network, a message is said to be routable if

there exists a path from sender to destination through which the mes-

sage can be relayed. In a mature subnetwork with Kademlia topology

every message is routable. If all peer connections are stably online, a

thin Kademlia table, i.e. a single peer for each bin up to d , is sufficient

to guarantee routing between nodes. In reality, however, networks are

subject to churn, i.e. nodes are expected to go offline regularly. In order

to ensure routability in the face of churn, the network needs to maintain

Kademlia topology. This means that each individual node needs to have

a saturated Kademlia table at all times. By keeping several connected

peers in each proximity order bin, a node can ensure that node dropouts

do not damage the saturation of their Kademlia table. Given a model of

node dropouts, we can calculate the minimum number of peers needed

per bin to guarantee that nodes are saturated with a probability that is

arbitrarily close to 1. The more peers a node keeps in a particular prox-

imity order bin, the more likely that the message destination address

and the peer will have a longer matching prefix. As a consequence of

forwarding the message to that peer, the proximity order increases more

quickly, and the message ends up closer to the destination than it would

with less peers in each bin (see also Figure 2.4).

With Kademlia saturation guaranteed, a node will always be able to

forward a message and ensure routability. If nodes comply with the

forwarding principles (and that is ensured by aligned incentives), the

only case when relaying could possibly break down is when a node

drops out of the network after having received a message but before it

managed to forward it.4

An important advantage of forwarding Kademlia is that this method of

routing requires a lot less bandwidth than the iterative algorithm. In

4Healthy nodes could commit to being able to forward within a (very short) constant

time; let’s call this the forwarding lag. In the case that a downstream peer disconnects

before this forwarding lag passes, then the upstream peer can re-forward the message

to an alternative peer, thereby keeping the message passing unbroken. See 2.3.1 for

more detail.

46 CHAPTER 2. NETWORK

the iterative version, known peers are not guaranteed to be online, so

finding one that is available adds an additional level of unpredictability.

Sender anonymity

Sender anonymity is a crucial feature of Swarm. It is important that

peers further down in the request cascade can never know who the

originator of the request was, because requests are relayed from peer-

to-peer.

The above rigid formulation of Kademlia routing would suggest that if a

node receives a message from a peer and that message and peer have a

proximity order of 0, then the recipient would be able to conclude that

the peer it received the message from must be the sender. If we allow

light node Swarm clients, i.e. clients that due to resource constraints

do not keep a full Kademlia saturation but instead have just a local

neighbourhood, then even a message from a peer in bin 0 remains of

ambiguous origin.

Bin density and multi-order hops

As a consequence of logarithmic distance and uniform node distribu-

tion, the population of peers exponentially increases as we move further

away from a particular node. This means that unless the number of

required connections in a bin doubles as bins increase in distance from

the node, shallower bins will always allow more choice of nodes for

potential connection. In particular, nodes have a chance to increase

the number of connections per bin in such a way that peer addresses

maximise density (i.e., in proximity order bin b, the subsequent bits of

peer addresses form a balanced binary tree). Such an arrangement is

optimal in the sense that for a bin depth of d , nodes are able to relay

all messages so that in one hop the proximity order of the destination

address will increase by d (see Figure 2.4).

CHAPTER 2. NETWORK 47

Figure 2.4: Bin density: types of saturation for PO bin 0 for a node with overlay

address starting with bit 0. Top left: A "thin" bin with a single peer is not

resilient to churn and only increases PO by 1 in one hop. Top right: At least two

peers are needed to maintain Kademlia topology in case of churn; two peers

when not balanced cannot guarantee multi-order hops. Bottom left: Two peers

balanced guarantees an increase of 2 POs in one hop. Bottom right: Four peers,

when balanced, can guarantee an increase of 3 POs in one hop.

48 CHAPTER 2. NETWORK

Factoring in underlay proximity

It is expected that as Swarm clients continue to evolve and develop,

nodes may factor in throughput when they select peers for connection.

All things being equal, nodes physically closer to each other tend to have

higher throughput, and therefore will be preferred in the long run. This

is how forwarding Kademlia is implicitly aware of the underlay topology

(Heep 2010).

2.1.4 Bootstrapping and maintaining Kademlia topology

This section discusses how a stable Kademlia topology can emerge. In

particular, it outlines the exact bootstrapping protocol that each node

must follow to reach and maintain a saturated Kademlia connectivity.

Nodes joining a decentralised network are supposed to be initially naive,

potentially initiating connection via only a single known peer with no

prior knowledge. For this reason, the bootstrapping process needs to

include an initial step that helps naive nodes to begin exchanging in-

formation about each other. This discovery process is called the hive

protocol.

Bootnodes

Swarm has no distinct node type or operation mode for bootnodes.

This means that naive nodes should be able to connect to any node on

the network and bootstrap their desired connectivity. In order not to

overburden any single node, electing one particular node as an initial

connection should be avoided, and the role of being a bootnode for

the newly connecting naive nodes should ideally be distributed among

participant nodes. This is achieved either with an invite system, or a

centralised bootnode service running a public gateway that responds

to an API call with the bzz address of a randomly chosen node among

online peers.

CHAPTER 2. NETWORK 49

Once connected to a node in the network, the hive protocol kicks in and

the naive node begins to learn about the bzz addresses of other nodes,

and thus it can start bootstrapping its connectivity.

Building up connections

Initially, each node begins with zero as their saturation depth. Nodes

keep advertising their saturation depth to their connected peers as it

changes. When a node A receives an attempt to establish a new con-

nection from a node B , she notifies each of her other peers about B

connecting to her only in the case that each peer’s proximity order rel-

ative to the connecting node A is not lower than that peer’s advertised

saturation depth. The notification is always sent to a peer that shares

a proximity order bin with the new connection. Formally, when y con-

nects to x, x notifies a subset of its connected peers. A peer p belongs to

this subset if PO(x, p) = PO(x, y) or dp ≤ PO(y, p). The notification takes

the form of a protocol message and includes the full overlay address and

underlay address information.5

Mature connectivity

After a sufficient number of nodes are connected, a bin becomes sat-

urated and the node’s neighbourhood depth can begin to increase.

Nodes keep their peers up to date by advertising their current depth

if it changes. As their depth increases, nodes will get notified of fewer

and fewer peers. Once the node finds all their nearest neighbours and

has saturated all the bins, no new peers are to be expected. For this

reason, a node can conclude a saturated Kademlia state if it receives

5Light nodes that do not wish to relay messages and do not aspire to build up a healthy

Kademlia are not included, see Section 2.3.4.

50 CHAPTER 2. NETWORK

no new peers for some time.6 Instead of having a hard deadline and a

binary state of saturation, we can quantify the certainty of saturation by

considering the time elapsed since the arrival of the most recent new

peer. Assuming stable connections, eventually each node online will

get to know its nearest neighbours and connect to them while keeping

each bin up to d non-empty. Therefore each node will converge on the

saturated state. To maintain a robust Kademlia topology in the face of

changing peer connections, it is crucial to include multiple peers within

each proximity order bin. This prevents the node from regressing to a

lower saturation state, even when there are no new nodes joining the

network.

2.2 Swarm storage

In this section, in 2.2.1, we first show how a network with quasi-permanent

connections in a Kademlia topology can support a load balancing, dis-

tributed storage of fixed-sized data blobs. In 2.2.1, we detail the generic

requirements on chunks and introduce actual chunk types. Finally, in

2.2.5, we turn to redundancy by neighbourhood replication as a first line

of defense against node churn.

2.2.1 Distributed immutable store for chunks

In this section, we discuss how networks using Kademlia overlay routing

are a suitable basis on which to implement a serverless storage solution

using distributed hash tables (DHTs). Then we introduce the DISC7

6Note that the node does not need to know the total number of nodes in the network.

In fact, some time after the node stops receiving new peer addresses, the node can

effectively estimate the size of the network: the depth of network is log2(n +1)+d

where n is the number of remote peers in the nearest neighbourhood and d is the

depth of that neighbourhood. It then follows that the total number of nodes in the

network can be estimated simply by taking this to the power of 2.
7DISC is distributed immutable store for chunks. In earlier work, we have referred

to this component as the ’distributed preimage archive’ (DPA), however, this phrase

became misleading since we now also allow chunks that are not the preimage of their

address.

CHAPTER 2. NETWORK 51

model, Swarm’s narrower interpretation of a DHT for storage. This

model imposes some requirements on chunks and necessitates ’upload’

protocols.

As is customary in Swarm, we provide a few resolutions of this acronym,

which summarise the most important features:

— decentralised infrastructure for storage and communication,

— distributed immutable store for chunks,

— data integrity by signature or content address,

— driven by incentives with smart contracts.

From DHT to DISC

Swarm’s DISC shares many similarities with widely known distributed

hash tables. The most important difference is that Swarm does not keep

track of where files are to be found, instead it actually stores pieces of the

file itself directly with the closest node(s). In what follows, we review

DHTs, as well as dive into the similarities and differences with DISC in

more detail.

Distributed hash tables use an overlay network to implement a key–

value container distributed over the nodes (see Figure 2.5). The basic

idea is that the keyspace is mapped onto the overlay address space, and

the value for a key in the container is to be found with nodes whose

addresses are in the proximity of the key. In the simplest case, let us

say that this is the single closest node to the key that stores the value.

In a network with Kademlia connectivity, any node can route to a node

whose address is closest to the key, therefore a lookup (i.e. looking up

the value belonging to a key) is reduced simply to routing a request.

DHTs used for distributed storage typically associate content identifiers

(as keys/addresses) with a changing list of seeders (as values) that can

serve that content (IPFS 2014, Crosby and Wallach 2007). However, the

same structure can be used directly: in Swarm, it is not information

about the location of content that is stored at the node closest to the

address, but the content itself (see Figure 2.6).

52 CHAPTER 2. NETWORK

D

S

Step 1: Request for seeder info

Step 2: Retrieving
seeder info

Step 3: Request
for chunk

Chunk
Address

Step 4: Delivery
of chunk

Figure 2.5: Distributed hash tables (DHTs) used for storage: node D (down-

loader) uses Kademlia routing in Step 1 to query nodes in the neighbourhood

of the chunk address to retrieve seeder info in Step 2. The seeder info is used to

contact node S (seeder) directly to request the chunk and deliver it in Steps 3

and 4.

Figure 2.6: Swarm DISC: Distributed Immutable Store for Chunks. In Step 1,

downloader node D uses Kademlia connectivity to send a request for the chunk

to a peer storer node that is closer to the address. This peer then repeats this

until node S is found that has the chunk. In other words peers relay the request

recursively via live peer connections ultimately to the neighbourhood of the

chunk address (request forwarding). In Step 2 the chunk is delivered along

the same route using the forwarding steps in the opposite direction (response

backwarding).

CHAPTER 2. NETWORK 53

Constraints

The DISC storage model is opinionated about which nodes store what

content and this implies the following restrictions:

fixed-size chunks

Load balancing of content is required among nodes and is realised

by splitting content into equal-sized units called chunks (see 2.2.1).
syncing

There must be a process whereby chunks get to where they are

supposed to be stored, no matter which node uploads them (see

2.3.2).
plausible deniability

Since nodes do not have a say in what they store, measures should

be employed that serve as the basis of legal protection for node

operators. They need to be able to plausibly deny knowing (or even

being able to know) anything about the chunks’ contents (see 2.2.4).
garbage collection

Since nodes commit to store any data close to them, there needs

to be a strategy to select which chunks are kept and which are

discarded in the presence of storage space constraints.

Chunks

Chunks are the basic storage units used in Swarm’s network layer. They

are an association of an address with content. Since retrieval in Swarm

(2.3.1) assumes that chunks are stored with nodes close to their address,

fair and equal load balancing requires that the addresses of chunks

should also be uniformly distributed in the address space, and have

their content limited and roughly uniform in size.

When chunks are retrieved, the downloader must be able to verify the

correctness of the content given the address. Such integrity translates to

guaranteeing uniqueness of content associated with an address. In order

to protect against frivolous network traffic, a third party of forwarding

nodes should be able to verify the integrity of chunks using only local

information available to the node.

54 CHAPTER 2. NETWORK

The deterministic and collision-free nature of addressing implies that

chunks are unique as a key–value association: If there exists a chunk with

an address, then no other valid chunk can have the same address; this

assumption is crucial as it makes the chunk store immutable, i.e. there

is no replace/update operation on chunks. Immutability is beneficial

in the context of relaying chunks as nodes can negotiate information

about the possession of chunks simply by checking their addresses. This

plays an important role in the stream protocol (see 2.3.3) and justifies

the DISC resolution as a distributed immutable store for chunks.

To sum up, chunk addressing needs to fulfill the following requirements:

deterministic
To enable local validation.

collision-free

To provide integrity guarantee.
uniformly distributed

To deliver load balancing.

In the current version of Swarm, we support two types of chunks: con-

tent addressed chunks and single owner chunks.

2.2.2 Content addressed chunks

A content addressed chunk is not assumed to be a meaningful storage

unit, i.e. they can be just blobs of arbitrary data resulting from splitting a

larger data blob, a file. The methods by which files are disassembled into

chunks when uploading and then reassembled from chunks when down-

loading are detailed in 4.1. The data size of a content addressed Swarm

chunk is limited to 4 kilobytes. One of the desirable consequences of

using this small chunk size is that concurrent retrieval is available even

for relatively small files, reducing the latency of downloads.

Binary Merkle tree hash

The canonical content addressed chunk in Swarm is called a binary

Merkle tree chunk (BMT chunk). The address of BMT chunks is calcu-

lated using the binary Merkle tree hash algorithm (BMT hash). The base

CHAPTER 2. NETWORK 55

Figure 2.7: Content addressed chunk. An at most 4KB payload with a 64-bit

little-endian encoded span prepended to it constitutes the chunk content used

in transport. The content address of the chunk is the hash of the byte slice that

is the span and the BMT root of the payload concatenated.

hash used in BMT is Keccak256, properties of which such as uniformity,

irreversibility, and collision resistance all carry over to the BMT hash

algorithm. As a result of uniformity, a random set of chunked content

will generate addresses evenly spread in the address space, i.e. imposing

storage requirements balanced among nodes.

The BMT chunk address is the hash of the 8-byte span and the root

hash of a binary Merkle tree (BMT) built on the 32-byte segments of the

underlying data (see Figure 2.8). If the chunk content is less than 4k, the

hash is calculated as if the chunk was padded with all zeros up to 4096

bytes.

This structure allows for compact inclusion proofs with a 32-byte res-

olution. An inclusion proof is a proof that one string is a substring of

another string, for instance, that a string is included in a chunk. In-

clusion proofs are defined on a data segment of a particular index, see

Figure 2.9. Such Merkle proofs are also used as proof of custody when

storer nodes provide evidence that they possess a chunk (see 3.4). To-

gether with the Swarm file hash (see 4.1.1), they allow for logarithmic

inclusion proofs for files, i.e., proof that a string is found to be part of a

file.

2.2.3 Single owner chunks

With single owner chunks, a user can assign arbitrary data to an address

and attest chunk integrity with their digital signature. The address is

56 CHAPTER 2. NETWORK

HRBMT Chunk Hash

13378 byte span H 7
0 BMT Root

H 6
0

H 5
0

H 4
0

H 3
0

H 2
0

H 1
0

D0
0

32 byte

segments.

D0
1

H 1
1

H 2
1

H 3
1

H 4
1

H 3
4 H 3

5

H 2
10

H 1
21 H 1

22

D0
42 D0

43

H 2
11

H 5
1

H 6
1

H 5
2 H 5

3

H 4
6 H 4

7

H 3
14 H 3

15

H 3
30 H 2

31

H 1
62 H 1

63

D0
126 D0

127

zero padding if

needed to fill 4Kb.

Figure 2.8: Binary Merkle Tree chunk hash in Swarm: the 1337 bytes of chunk

data is segmented into 32-byte segments. Zero padding is used to fill up the

rest up to 4 kilobytes. Pairs of segments are hashed together using Keccak256 to

build up the binary tree. On level 8, the binary Merkle root is prepended with

the 8-byte span and hashed to yield the BMT chunk hash.

CHAPTER 2. NETWORK 57

Figure 2.9: Compact segment inclusion proofs for chunks. Assume we need

proof for segment 26 of a chunk (yellow). The orange hashes of the BMT are

the sister nodes on the path from the data segment up to the root and consti-

tute what needs to be part of a proof. When these are provided together with

the root hash and the segment index, the proof can be verified. The side on

which proof item i needs to be applied depends on the i -th bit (starting from

least significant) of the binary representation of the index. Finally, the span is

prepended and the resulting hash should match the chunk root hash.

58 CHAPTER 2. NETWORK

calculated as the hash of an identifier and an owner. The chunk content

is presented in a structure composed of the identifier, the payload, and

a signature attesting to the association of identifier and payload (see

Figure 2.10).

content
payload

32 bytes arbitrary identifier

65 bytes 〈r, s, v〉 representation of an EC signature (32+32+1

bytes),

an 8-byte little-endian binary of uint64 chunk span,

maximum 4096 bytes of regular chunk data.

address
Keccak256 hash of identifier + owner account.

Figure 2.10: Single owner chunk. The chunk content is composed of headers

followed by an at most 4KB payload. The last header field is the 8-byte span

prepended just like in content addressed chunks. The first two header fields

provide single-owner attestation of integrity: an identifier and a signature

signing off on the identifier and the BMT hash of span and payload. The address

is the hash of the ID and the signer account.

The validity of a single owner chunk is checked with the following pro-

cess:

1. Deserialise the chunk content into fields for identifier, signature,

and payload.

CHAPTER 2. NETWORK 59

2. Construct the expected plain text composed of the identifier and

the BMT hash of the payload.

3. Recover the owner’s address from the signature using the plain

text.

4. Check the hash of the identifier and the owner (expected address)

against the chunk address.

Single owner chunks offer a virtual partitioning of part of the address

space into subspaces associated with the single owner. Checking their

validity is actually an authentication verifying that the owner has write

access to the address with the correct identifier.

As suggested by the span and the length of the payload, a single owner

chunk can encapsulate a regular content addressed chunk. Anyone

can simply reassign a regular chunk to an address in their subspace

designated by the identifier (see also 4.4.4).

It should be noted that the notion of integrity is somewhat weaker for

single owner chunks than in the case of content addressed chunks: After

all, it is, in principle, possible to assign and sign any payload to an

identifier. Nonetheless, given the fact that the chunk can only be created

by a single owner (of the private key that the signature requires), it is

reasonable to expect uniqueness guarantees because we hope the node

will want to comply with application protocols to get the desired result.

However, if the owner of the private key signs two different payloads with

the same identifier and uploads both chunks to Swarm, the behaviour

of the network is unpredictable. Measures can be taken to mitigate this

in layer (3) and are discussed later in detail in 4.3.3.

With two types of chunks, integrity is linked to collision-free hash digests,

derived from either a single owner and an arbitrary identifier attested by

a signature or directly from the content. This justifies the resolution of

the DISC acronym as data integrity through signing or content address.

2.2.4 Chunk encryption

Chunks should be encrypted by default. Beyond client needs for confi-

dentiality, encryption has two further important roles. (1) Obfuscation

60 CHAPTER 2. NETWORK

of chunk content by encryption provides a degree of plausible denia-

bility; using it across the board makes this defense stronger. (2) The

ability to choose arbitrary encryption keys together with the property of

uniform distribution offer predictable ways of mining chunks, i.e., gen-

erating an encrypted variant of the same content so that the resulting

chunk address satisfies certain constraints, e.g. is closer to or farther

away from a particular address. This is an important property used in (1)

price arbitrage (see 3.1.2) and (2) efficient utilisation of postage stamps

(see 3.3).

Figure 2.11: Chunk encryption in Swarm. Symmetric encryption with a modi-

fied counter-mode block cipher. The plaintext input is the content padded with

random bytes to 4 kilobytes. The span bytes are also encrypted as if they were

continuations of the payload.

Chunks shorter than 4 kilobytes are padded with random bytes (gen-

erated from the chunk encryption seed). The full chunk plaintext is

encrypted and decrypted using stream cipher; XOR with a PRNG seeded

with the corresponding symmetric key. In order not to increase the

attack surface by introducing additional cryptographic primitives, the

stream cipher of choice is using Keccak256 in counter mode, i.e. hashing

together the key with a counter for each consecutive segment of 32 bytes.

In order to allow selective disclosure of individual segments that are part

of an encrypted file, yet leak no information about the rest of the file,

we add an additional step of hashing to derive the encryption key for a

segment within the chunk. This scheme is easy and cheap to implement

CHAPTER 2. NETWORK 61

in the (EVM), lending itself to use in smart contracts containing the

plaintext of encrypted Swarm content.

The prepended metadata encoding the chunk span is also encrypted as

if it was a continuation of the chunk, i.e. with counter 128. Encrypted

chunk content is hashed using the BMT hash digest just as unencrypted

ones are. The fact that a chunk is encrypted may be guessed from the

span value, but apart from this, in the network layer, encrypted chunks

behave in exactly the same way as unencrypted ones.

Single owner chunks can also be encrypted, which simply means that

they wrap an encrypted regular chunk. Therefore, their payload and

span reflect the chunk content encryption described above, the hash

signed with the identifier is the BMT hash of the encrypted span and

payload, i.e. the same as that of the wrapped chunk.

2.2.5 Redundancy by local replication

It is important to have a resilient means of requesting data. To achieve

this, Swarm implements the approach of defence in depth. In the case

that a request fails due to a problem with forwarding, one can retry

the request with another peer. Alternatively, to guard against these oc-

currences, a node can initiate concurrent retrieve requests right away.

However, such fallback options are not available if the single last node

that stores the chunk drops out from the network. Therefore, redun-

dancy is of major importance to ensure data availability. If the closest

node is the only storer of the requested data and it drops out of the net-

work, then there is no way to retrieve the content. This basic scenario is

handled by ensuring that each set of nearest neighbours hold replicas of

each chunk that is closest to any one of them, duplicating the storage of

chunks and therefore providing data redundancy.

Size of nearest neighbourhoods

If the Kademlia connectivity is defined over storer nodes, then in a

network with Kademlia topology there exists a depth d such that (1)

each proximity order bin less than d contains at least k storer peers,

62 CHAPTER 2. NETWORK

and (2) all storer nodes with proximity order d or higher are actually

connected peers. In order to ensure data redundancy, we can add to this

definition a criterion that (3) the nearest neighbourhood defined by d

must contain at least r peers.

Let us define neighbourhood size NHSx(d) as the cardinality of the

neighbourhood defined by depth d of node x. Then, a node has Kadem-

lia connectivity with redundancy factor r if there exists a depth d such

that (1) each proximity order bin lower than d contains at least k storer

peers (k is the bin density parameter, see 2.1.3), and (2) all storer nodes

with proximity order d or higher are actually connected peers, and (3)

NHSx(d) ≥ r .

We can then take the highest depth d ′ such that (1) and (2) are satisfied.

Such a d is guaranteed to exist and the hive protocol is always able to

bootstrap it. As we decrease d ′, the number of distinct neighbourhoods

grow proportionally, so for any redundancy parameter not greater than

the network size r ≤ N = NHSx(0), there will be a highest 0 < dr ≤ d ′

such that NHSx(dr) ≥ r . Therefore, redundant Kademlia connectivity is

always achievable.

For a particular redundancy, the area of the fully connected neighbour-

hood defines an area of responsibility. The proximity order boundary of

the area of responsibility defines a radius of responsibility for the node.

A storer node is said to be responsible for (storing) a chunk if the chunk

address falls within the node’s radius of responsibility.

It is already instructive at this point to show neighbourhoods and how

they are structured, see Figure 2.12.

Redundant retrievability

A chunk is said to have redundant retrievability with degree r if it is

retrievable and would remain so even after any r nodes responsible for

it leave the network. The naive approach presented so far requiring the

single closest node to keep the content can be interpreted as degree zero

retrievability. If nodes in their area of responsibility fully replicate their

content (see 2.3.3), then every chunk in the Swarm DISC is redundantly

CHAPTER 2. NETWORK 63

Figure 2.12: Nearest neighbours. Top: Each PO defines a neighbourhood, the

neighbourhood depth of the node (black circle) is defined as the highest PO

such that the neighbourhood has at least R=4 peers (redundancy parameter)

and all shallower bins are non-empty. Bottom: An asymmetric neighbourhood.

Nearest neighbours of the orange node include the black node but not the other

way round.

64 CHAPTER 2. NETWORK

retrievable with degree r . Let us take the node x that is closest to a chunk

c. Since it has Kademlia connectivity with redundancy r , there are r +1

nodes responsible for the chunk in a neighbourhood fully connected

and replicating content. After r responsible nodes drop out, there is just

one node remaining which still has the chunk. However, if Kademlia

connectivity is maintained as the r nodes leave, this node will continue

to be accessible by any other node in the network, and therefore the

chunk is still retrievable. Now, for the network to ensure that all chunks

remain redundantly retrievable with degree r , the nodes comprising the

new neighbourhood formed due to the reorganising of the network must

respond by re-syncing their content to satisfy the protocol’s replication

criteria. This is called the guarantee of eventual consistency.

Resource constraints

Let us assume then that (1) the forwarding strategy that relays requests

along stable nodes and (2) the storage strategy that each node in the

nearest neighbourhood (of r storer nodes) stores all chunks whose ad-

dresses fall within their radius of responsibility. As long as these assump-

tions hold, each chunk is retrievable even if r storer nodes drop offline

simultaneously. As for (2), we still need to assume that every node in

the nearest neighbour set can store each chunk. Realistically, however,

all nodes have resource limitations. With time, the overall amount of

distinct chunks ever uploaded to Swarm will increase indefinitely. Un-

less the total storage capacity steadily increases, we should expect that

the nodes in Swarm are able to store only a subset of chunks. Some

nodes will reach the limit of their storage capacity and therefore face the

decision whether to stop accepting new chunks via syncing or to make

space by deleting some of their existing chunks.

The process that purges chunks from their local storage is called garbage

collection. The process that dictates which chunks are chosen for

garbage collection is called the garbage collection strategy. For a profit-

maximizing node, it holds that it is always best to garbage-collect the

chunks that are predicted to be the least profitable in the future and, in

order to maximize profit, it is desired for a node to get this prediction

right (see 3.3). So, in order to factor in these capacity constraints, we will

CHAPTER 2. NETWORK 65

introduce the notion of chunk value and modify our definitions using

the minimum value constraint:

In Swarm’s DISC, at all times, there is a chunk value v such that every

chunk with a value greater than v is both retrievable and eventually

(after syncing) redundantly retrievable with degree r .

This value ideally corresponds to the relative importance of preserving

the chunk that uploaders need to indicate. In order for storer nodes to

respect it, the value should also align with the profitability of a chunk

and is therefore expressed in the pricing of uploads (see 3.3.4).

2.3 Push and pull: chunk retrieval and syncing

In this section, we demonstrate how chunks actually move around in the

network: How they are pushed to the storer nodes in the neighbourhood

they belong to when they are uploaded, as well as how they are pulled

from the storer nodes when they are downloaded.

2.3.1 Retrieval

In a distributed chunk store, we say that a chunk is an accessible chunk

if a message is routable between the requester and the node that is

closest to the chunk. Sending a retrieve request message to the chunk

address will reach this node. Because of eventual consistency, the node

closest to the chunk address will store the chunk. Therefore, in a DISC

distributed chunk store with healthy Kademlia topology, all chunks are

always accessible for every node.

Chunk delivery

For retrieval, accessibility needs to be complemented with a process

to have the content delivered back to the requesting node, preferably

using only the chunk address. There are at least three alternative ways

to achieve this (see Figure 2.13):

direct delivery

The chunk delivery is sent via a direct underlay connection.

66 CHAPTER 2. NETWORK

routed delivery

The chunk delivery is sent as message using routing.
backwarding

The chunk delivery response simply follows the route along which

the request was forwarded, just backwards all the way to the origi-

nator.

Figure 2.13: Alternative ways to deliver chunks. Top: direct delivery: via direct

underlay connection. Centre: routed delivery: chunk is sent using Kademlia

routing. Bottom: backwarding re-uses the exact peers on the path of the request

route to relay the delivery response.

Firstly, using the obvious direct delivery, the chunk is delivered in one

step via a lower-level network protocol. This requires an ad-hoc connec-

tion with the associated improvement in latency traded off for worsened

CHAPTER 2. NETWORK 67

security of privacy.8 Secondly, using routed delivery, a chunk is deliv-

ered back to its requestor using ad-hoc routing as determined from the

storer’s perspective at the time of sending it. Whether direct or routed, al-

lowing deliveries routed independently of the request route presupposes

that the requestor’s address is (at least partially) known by the storer

and routing nodes. Consequently, these methods disclose information

that can identify the requestor. However, with forwarding–backwarding

Kademlia this is not necessary: The storer node responds back to their

requesting peer with the delivery, while intermediate forwarding nodes

remember which of their peers requested what chunk. When the chunk

is delivered, they pass it on back to their immediate requestor, and so

on until it eventually arrives at the node that originally requested it. In

other words, the chunk delivery response simply follows the request

route back to the originator (see Figure 2.14). Since it is the reverse

of the forwarding, we can playfully call this backwarding. Swarm uses

this option, which makes it possible to disclose no requestor identifica-

tion in any form, and thus Swarm implements completely anonymous

retrieval.

Ensuring requestor anonymity by default in the retrieval protocol is a

crucial feature that Swarm insists upon. This feature aims to safeguard

user privacy and enables censorship-resistant access.

The generic solution of implementing retrieval by backwarding as de-

picted in Figure 2.15 has further benefits relating to spam protection,

scaling and incentivisation, which will be discussed in the remainder of

this section.

Protection against unsolicited chunks

In order to remember requests, the forwarding node needs to allocate

resources that come with a certain cost (they occupy space in memory).

The requests that are not followed by a corresponding delivery should

eventually be garbage collected, so there needs to be a defined time

8Beeline delivery has some merit, i.e. bandwidth saving and better latency, so we do

not completely rule out the possibility of implementing it.

68 CHAPTER 2. NETWORK

Figure 2.14: Backwarding: pattern for anonymous request–response round-

trips in forwarding Kademlia. Here a node with overlay address ...0000... sending

a request to target1111... to which the closest online node is ...1110... The

leading ellipsis represents the prefix shared by the requestor and target and has

a length of n bits. The trailing ellipsis represents part of the address that is not

relevant for routing as at that depth nodes are already unique. The request uses

the usual Kademlia forwarding, but the relaying nodes on the way remember

the peer the request came from so that when the response arrives, they can

backward it (i.e. pass it back) along the same route.

Figure 2.15: Retrieval. Node D (Downloader) sends a retrieve request to the

chunk’s address. Retrieval uses forwarding Kademlia, so the request is relayed

via forwarding nodes F0, ..., Fn all the way to node S, the storer node closest to

the chunk address. The chunk is then delivered by being passed back along the

same route to the downloader.

CHAPTER 2. NETWORK 69

period during which they are active. Downstream peers also need to be

informed about the timeout of this request. This makes sense, since the

originator of the request will want to attach a time-to-live duration to

the request to indicate how long it will wait for a response.

Sending unsolicited chunks is an offence as it can lead to denial of ser-

vice (DoS). By remembering a request, nodes are able to recognise unso-

licited chunk deliveries and penalise the peers sending them. Chunks

that are delivered after the request expires will be treated as unsolicited.

Since there may be some discrepancy assessing the expiry time between

nodes, there needs to be some tolerance for unsolicited chunk deliveries,

but if they go above a particular (but still small) percentage of requests

forwarded, the offending peer is disconnected and blacklisted. Such

local sanctions are the easiest and simplest way to incentivise adherence

to the protocol (see 3.2.5).

Re-requesting

There is the potential for a large proportion of Swarm nodes to not be al-

ways stably online. Such a high churn situation would be problematic if

we used the naive strategy of forwarding requests to any one closer node:

If a node on the path were to go offline before delivery is completed,

then the request-response round trip is broken, effectively rendering

the chunk requested not retrievable. Commitment to pay for a chunk is

considered void if the connection to the requested peer is dropped, so

there is no harm in re-requesting the chunk from another node.

Timeout vs. not found

Note that in Swarm there is no explicit negative response for chunks not

being found. In principle, the node that is closest to the retrieved address

can determine the absence of a chunk at that address and could issue a

"not found" response. However, this is not desirable for the following

reason: While the closest node to a chunk can verify its absence from its

expected location in the network, nodes further away from the chunk

cannot reliably conclude the same. They lack first-hand verification,

70 CHAPTER 2. NETWORK

and any positive evidence regarding the chunk’s retrievability obtained

later can be retrospectively plausibly deniable.

All in all, as long as delivery has the potential to create earnings for the

storer, the best strategy is to keep a pending request open until it times

out and be prepared in case the chunk should appear. There are several

ways the chunk could arrive after the request: (1) syncing from existing

peers (2) appearance of a new node or (3) if a request precedes upload,

e.g. the requestor has already "subscribed" to a single owner address

(see 6.3) to decrease latency of retrieval. This is conceptually different

from the usual server-client based architectures where it makes sense to

expect a resource to be either on the host server or not.

Opportunistic caching

Using backwarding for chunk delivery responses to retrieve requests

also enables opportunistic caching, where a forwarding node receives

a chunk and the chunk is then saved in case it will be requested again.

This mechanism is crucial in ensuring that Swarm scales the storage

and distribution of popular content automatically (see 3.1.2).

Incentives

So far, we have shown that by using the retrieval protocol and main-

taining Kademlia connectivity, nodes in the network are capable of

retrieving chunks. However, since forwarding is expending a scarce

resource (bandwidth), without providing the ability to account for this

bandwidth use, network reliability will be contingent on the proportion

of freeriding and altruism. To address this, in Section 3 we will outline

a system of economic incentives that align with the desired behaviour

of nodes in the network. When these profit-maximising strategies are

employed by node operators, they give rise to emergent behaviour that

is beneficial for users of the network as a whole.

CHAPTER 2. NETWORK 71

2.3.2 Push syncing

In the previous sections, we presented how a network of nodes main-

taining a Kademlia overlay topology can be used as a distributed chunk

store and how Forwarding Kademlia routing can be used to define a pro-

tocol for retrieving chunks. When discussing retrieval, we assumed that

chunks are located with the node whose address is closest to theirs. This

section describes the protocol responsible for realising this assumption:

ensuring delivery of the chunk to its prescribed storer after it has been

uploaded to any arbitrary node.

This network protocol, called push syncing, is analogous to chunk re-

trieval: First, a chunk is relayed to the node closest to the chunk address

via the same route as a retrieval request would be, and then in response

a statement of custody receipt is passed back along the same path (see

Figure 2.16). The statement of custody sent back by the storer to the

uploader indicates that the chunk has reached the neighbourhood from

which it is universally retrievable. By tracking these responses for each

constituent chunk of an upload, uploaders can make sure that their

upload is fully retrievable by any node in the network before sharing or

publishing the address of their upload. Keeping this count of chunks

push-synced and receipts received serves as the back-end for a progress

bar that can be displayed to the uploader to give feedback of the suc-

cessful propagation of their data across the network (see 6.1).

Statements of custody are signed by the nodes that claim to be the

closest to the address. Similarly to downloaders in the retrieval protocol,

the identity of uploaders can also remain hidden, hence forwarding

Kademlia can implement anonymous uploads.

Another similarity is that in order to allow backwarding for responses,

nodes should remember which peer sent a particular chunk. This record

should persist for a short period while the statement of custody re-

sponses are expected. When this period ends, the record is removed. A

statement of custody not matching a record is considered unsolicited

and is allowed only up to a small percentage of all push-sync traffic

72 CHAPTER 2. NETWORK

Figure 2.16: Push syncing. Node U (Uploader) push-syncs a chunk to the

chunk’s address. Push-sync uses forwarding, so the chunk is relayed via for-

warding nodes F0, ..., Fn all the way to node S, the storer node closest to the

chunk address (the arrows represent transfer of the chunk via direct peer-to-

peer connection). A statement of custody receipt signed by S is then passed

back along the same route as an acknowledgment to the uploader.

with a peer. Going above this tolerance threshold is sanctioned with

disconnection and blacklisting (see 3.2.5).

In this section, we described how the logistics of chunk uploads can be

organised with a network protocol using Forwarding Kademlia routing

with response backwarding. However, this solution is not complete until

it is secured with aligned incentives: The strategy to follow this protocol

should be incentivised and DoS abuse should be disincentivised. These

are discussed later in detail in 3.3 and 3.1.3).

2.3.3 Pull syncing

Pull syncing is the protocol that is responsible for the following two

properties:

eventual consistency

Syncing neighbourhoods as and when the topology changes due to

churn or new nodes joining.

CHAPTER 2. NETWORK 73

maximum resource utilisation
Nodes can pull chunks from their peers to fill up their surplus stor-

age.9

Pull syncing is node-centric as opposed to chunk-centric, i.e. it makes

sure that a node’s storage is filled if needed, as well as syncing chunks

within a neighbourhood. When two nodes are connected, they will start

syncing both ways so that on each peer connection there is bidirectional

chunk traffic. The two directions of syncing are managed by distinct and

independent streams. In the context of a stream, the consumer of the

stream is called downstream peer or client, while the provider is called

the upstream peer or server.

When two nodes connect and engage in chunk synchronisation, the

upstream peer offers all the chunks it stores locally in a data stream

per proximity order bin. To receive chunks closer to the downstream

peer than to the upstream peer, a downstream peer can subscribe to the

chunk stream of the proximity order bin that the upstream peer belongs

to in their Kademlia table. If the peer connection is within the nearest

neighbour depth d , the client subscribes to all streams with proximity

order bin d or greater. As a result, peers eventually replicate all chunks

belonging to their area of responsibility.

A pull syncing server’s behaviour is referred to as being that of a stream

provider in the stream protocol. Nodes maintain a record of the time

when they stored a chunk locally by indexing them with an ascend-

ing storage count known as the bin ID. For each proximity order bin,

upstream peers offer to stream chunks in descending order of storage

timestamp. As a result of syncing streams on each peer connection, a

chunk can be synced to a downstream peer from multiple upstream

peers. In order to save bandwidth by not sending data chunks to peers

9Maximum storage utilisation may not be optimal in terms of the profitability of

nodes. Put differently, storer nodes have an optimal storage capacity based on how

often content is requested from them. This means that in practice, profit-optimised

maximum utilisation of storage capacity requires operators to run multiple node

instances.

74 CHAPTER 2. NETWORK

that already have them, the stream protocol implements a round-trip:

Before sending chunks, the upstream peer presents a batch of chunks

identified by their address. The downstream peer then responds with

indicating which chunks from the offered batch they actually need (see

Figure 2.17). Note that the downstream peer determines whether they

have the chunk based on the chunk address. Thus, this method critically

relies on the chunk integrity assumption discussed in 2.2.1.

Figure 2.17: Pull syncing. Nodes continuously synchronise their nearest neigh-

bourhood. If they have free capacity, they also pull sync chunks belonging to

shallower bins from peers falling outside the neighbourhood depth.

In the context of a peer connection, a client is said to be synced if it

has synced all the chunks of the upstream peer. Note that due to disk

capacity limitations, nodes must impose a value cutoff, and as such, "all

chunks" reads as shorthand for "all chunks having a value greater than

v" (v is a constant ranking function, the origin of which is discussed

later in 3.3.3). In order for a node to promise they store all chunks with

value greater than v , it is necessary for all its neighbours to have also

CHAPTER 2. NETWORK 75

stored all chunks greater than value v . In other words, nodes syncing

inherit the maximum such value from among their storer peers.

If chunks are synced in the order they are stored, this may not result

in the node always having the most profitable (most often requested)

chunks. Thus it may be advisable to sync chunks starting with the most

popular ones according to upstream peers and finish syncing when

storage capacity is reached. In this way, a node’s limited storage will be

optimised. Syncing and garbage collection are discussed further in 3.3

and 3.3.4.

To conclude this section, we show how the criteria of eventual consis-

tency are met in a healthy Swarm. Chunks found in the local store of

any node will become retrievable after being synced to their storers.

This is because as long as those as peers in the network pull chunks

closer to them than to the upstream peer, each chunk travels a route

that would also qualify as valid a forwarding path in the push-sync pro-

tocol. If new nodes are added and old nodes drop out, neighbourhoods

change, but as long as local redundancy is high enough that churn can

not render previously retrievable chunks non-retrievable, neighbour-

hoods eventually replicate their content and redundancy is restored.

Consider the unlikely event that a whole new neighbourhood is formed

and the nodes that originally held the content belonging to this neigh-

bourhood end up outside of it, resulting in a temporary unavailability

of those chunks. Even in this scenario, as long as there is a chain of

nodes running pull-syncing streams on the relevant bins, redundant

retrievability is eventually restored.

2.3.4 Light nodes

The concept of a light node refers to a special mode of operation neces-

sitated by poor bandwidth environments, e.g. mobile devices on low

throughput networks or devices allowing only transient or low-volume

storage.

76 CHAPTER 2. NETWORK

A node is said to be light by virtue of not participating fully in the usual

protocols detailed in the previous sections, i.e. retrieval, push syncing,

or pull syncing.

A node that has restricted bandwidth environment or in whatever way

has limited capacity to maintain underlay connections is not expected

to be able to forward messages conforming to the rules of Kademlia

routing. This needs to be communicated to its peers so that they do not

relay messages to it.

As all protocols in Swarm are modular, a node may switch on or off any

protocol independently (depending on capacity and earnings require-

ments). To give an example: a node that has no storage space available,

but has spare bandwidth, may participate as a forwarding node only. Of

course, while switching off protocols is technically feasible, a node must

at all times take into account the fact that his peers expect a certain level

of service if this is advertised and may not accept that some services are

switched off and choose not to interact with that node.

Since forwarding can earn revenue, these nodes may still be incentivised

to accept retrieve requests. However, if the light node has Kademlia

connectivity above proximity order bin p (i.e. they are connected to all

storer nodes within their nearest neighbourhood of r peers at depth d ,

and there is at least one peer in each of their proximity order bin from p

to d), they can advertise this and therefore participate in forwarding.

When they want to retrieve or push chunks, if the chunk address falls

into a proximity order bin where there are no peers, they can just pick a

peer in another bin. Though this may result in a spurious hop (where the

proximity of the message destination to the latest peer does not increase

as a result of the relaying), the Kademlia assumption that routing can be

completed in logarithmic steps still holds valid.

A node that is advertised as a storer/caching node is expected to store

all chunks above a certain value. In order to maintain consistency,

they need to synchronise content within their area of responsibility,

which requires them to run the pull-sync protocol. The same applies

to aspiring storer nodes that come online with available storage and

CHAPTER 2. NETWORK 77

open up to pull-sync streams to fill their storage capacity. In the early

stages of this, it does not make sense for a node to sync to other full

storer nodes. However, it can still be useful for them to sync with other

similar newcomer nodes, especially if storer nodes are maxing out on

their bandwidth.

The crucial thing here is that for redundancy and hops to work, light

nodes with incomplete, unsaturated Kademlia tables should not be

considered by other peers when calculating the level of saturation of the

network.

78 CHAPTER 2. NETWORK

3. INCENTIVES

The Swarm network comprises many independent nodes, running soft-

ware which implements the Swarm protocol. It is important to realise

that even though nodes run the same protocol, the emergent behaviour

of the network is not guaranteed by the protocol alone; as nodes are

autonomous, they are essentially "free" to react in any way they desire to

incoming messages of peers. It is, however possible to make it profitable

for a node to react in a way that is beneficial for the desired emergent

behaviour of the network, while making it costly to act in a way that is

detrimental. Broadly speaking, this is achieved in Swarm by enabling a

transfer of value from those nodes who are using the resources of the

network (net users) to those who are providing it (net providers).

3.1 Sharing bandwidth

3.1.1 Incentives for serving and relaying

Forwarding Kademlia and repeated dealings

The retrieval of a chunk is ultimately initiated by someone accessing

content, and therefore all costs related to this retrieval should be borne

by them. While paid retrievals may not sound like a popular idea when

today’s web is "free", many of the problems with the current web stems

from consumers’ inability to share the costs of hosting and distribution

with content publishers directly. In principle, the retrieval of a chunk

can be perceived as a functional unit where the storer acts as a service

provider and the requestor as consumer. The provider renders a service

79

80 CHAPTER 3. INCENTIVES

Figure 3.1: Incentive design

to the consumer, and in return, the consumer should provide compensa-

tion. Such a direct transaction would normally require that transactors

are known to each other, so if we are to maintain the anonymity require-

ment on downloads, we must conceptualise compensation in a novel

way.

As we use forwarding Kademlia, chunk retrieval subsumes a series of

relaying actions performed by forwarding nodes. Since these are inde-

pendent actors, it is already necessary to incentivise each act of relaying

independently. Importantly, if only instances of relaying matter, then

transactors are restricted to connected peers, regardless of the specifics

of accounting and compensation (see 3.2.1). Given that the set of ever

connected peers forms a quasi-permanent set across sessions, we are

able to frame the interaction within the context of repeated dealings.

Such a setting always creates extra incentive for the parties involved

to play nice. It is reasonable to exercise preference for peers showing

an untainted historical record. Moreover, since the set of connected

peers is logarithmic in the network size, any book-keeping or blockchain

contract that the repeated interaction with a peer might necessitate is

kept manageable, offering a scalable solution. Turning the argument

CHAPTER 3. INCENTIVES 81

around, we could say that keeping balances with a manageable number

of peers, as well as the ambiguity of request origination are the very

reasons for nodes to have limited connectivity, i.e., that they choose

leaner Kademlia bins.

Charging for backwarded response

If accepting a retrieve request already constitutes revenue for forward-

ing nodes, i.e. an accounting event crediting the downstream peer is

triggered before the response is delivered, then it creates a perverse

incentive not to forward the requests. Conditioning the request revenue

fulfilment on successful retrieval is the natural solution: The accounting

event is triggered only when a requested chunk is delivered back to its

requestor, see Figure 3.2.

Figure 3.2: Incentivising retrieval. Node D (Downloader) sends a retrieve

request to the chunk’s address. Retrieval uses forwarding, so the request is

relayed via forwarding nodes F0, ..., Fn all the way to node S, the storer node

closest to the chunk address. The chunk is delivered by being passed back along

the same route to the downloader. Receiving the chunk response triggers an

accounting event.

If, however, there is no cost to a request, then sending many illegitimate

requests for non-existing chunks (random addresses) becomes possible.

This is easily mitigated by imposing sanctions on peers that send too

many requests for chunks that do not exist (see 3.2.5).

Once a node initiates (starts or forwards) a request, it commits to pay

for that chunk if it is delivered within the defined time to live (TTL),

therefore there is never an incentive to block timely deliveries when

82 CHAPTER 3. INCENTIVES

the chunk is passed back. This commitment also dissuades nodes from

frivolously asking too many peers for a chunk, since, if multiple peers

respond with delivery, each must be paid.

3.1.2 Pricing protocol for chunk retrieval

Next, we describe the protocol which nodes use to communicate their

price for delivering chunks in the Swarm network. Building on top of

this protocol, strategies can then be implemented by nodes who wish to

compete in the market with other nodes in terms of quality of service

and price.

Price discovery

The main merit of the protocol is that it allows for the mechanisms of

price discovery to be based only on local decisions, which is essential

for the following reasons: (1) Bandwidth costs are not homogeneous

around the world: Allowing nodes to express their cost structure via their

price will enable competition on price and quality, ultimately benefiting

the end-user. (2) The demand for bandwidth resource is constantly

changing due to fluctuations in usage or connectivity. (3) Being able to

react directly to changes creates a self-regulating system.

Practically, without this possibility, a node operator might decide to

shut down their node when costs go up or, conversely, end-users might

overpay for an extended period of time when costs or demand decrease

and there is no competitive pressure for nodes to reduce their price

accordingly.

Bandwidth is a service that comes with "instant gratification" and there-

fore immediate acknowledgement and accounting of its cost are justi-

fied. Since it is hard to conceive of any externalities or non-linearities

in the overall demand and supply of bandwidth, a pricing mechanism

which provides for both (1) efficient and immediate signalling and (2)

competitive choice with minimal switching and discovery costs is most

likely to accommodate strategies that result in a globally optimal re-

source allocation.

CHAPTER 3. INCENTIVES 83

To facilitate this, we introduce a protocol message that can communi-

cate these prices to upstream peers. We can conceptualise this message

as an alternative response to a request. Nodes maintain the prices as-

sociated with each peer for each proximity order. Therefore, when they

issue a retrieve request, they already know the price they commit to pay

as long as the downstream peer successfully delivers the valid chunk

within the time-to-live period. However, there is no point in restricting

the price signal just to responses: If, for whatever reason, a peer decides

to change the prices, it is in the interest of both parties to exchange this

information even if there is a request to respond to. In order to prevent

DoS attacks by flooding upstream peers with price change messages,

the rate of price messages is limited. Well-behaved and competitively

priced nodes are favoured by their peers; if a node’s prices are set too

high or their prices exhibit a much higher volatility than others in the

network, then peers will be less willing to request chunks from them.1

For simplicity of reasoning, we posit that the default price is zero, corre-

sponding to a free service (altruistic strategy).

Differential pricing of proximities

If the price of a chunk is the same at all proximities, then there is no real

incentive for nodes to forward requests other than the potential to cache

the chunk and earn revenue by reselling it. This option is hard to justify

for new chunks, especially if they are in the shallow proximity orders

of a node where they are unlikely to be requested. More importantly,

if the pricing of chunks is uniform across proximity orders, colluding

nodes can generate chunk traffic and pocket exactly as much as they

send, virtually a free DoS attack (see Figure 3.3).

To mitigate this attack, the price a requestor pays for a chunk needs to be

strictly greater than what the storer node would receive as compensation

when a request is routed from requestor to storer. We need to establish a

1While this suggests that unreasonable pricing is taken care of by market forces, in

order to prevent catastrophic connectivity changes as a result of radical price fluctua-

tions, limiting the rate of change may need to be enforced on the protocol level.

84 CHAPTER 3. INCENTIVES

Figure 3.3: Uniform chunk price across proximities would allow a DoS attack.

An attacker can create a flow of traffic between two nodes D and S by sending

retrieve requests towards S which only S can serve. If prices are the same across

proximities, such an attack would incur no cost for the attacker.

pricing scheme that rewards forwarding nodes, hence, this necessitates

the implementation of differential pricing based on node proximity. If

the price of delivery is lower as a node gets further from the chunk,

then the request can always be sent that way because the forwarder

will pocket the difference and therefore make a profit. This means that

an effective differential scheme will converge to a pricing model where

delivery costs more if the peer is further from the chunk address, i.e.

rewards for chunk deliveries are a decreasing function of proximity.

Due to competitive pressure along the delivery path and in the neigh-

borhood, we expect that the differential a node is applying to the down-

stream price to converge towards the marginal cost of an instance of

forwarding. The downstream price is determined by the bin density

of the node. Assuming balanced bins with cardinality 2n , a node can

guarantee to increase the proximity order by n in one hop. At the same

time, it also means that they can spread the cost over n proximity bins

pushing the overall price down.

CHAPTER 3. INCENTIVES 85

Uniformity of price across peers

Take a node A that needs to forward a request for a chunk which falls

into A’s PO bin n. Notice that all other peers of A in bins n +1,n +2, ...,

just like A also have the chunk in their PO n. If any of these peers, say

B , has a price for proximity order n cheaper than A, A can lower its

price for PO bin n, forward all increased traffic to B and still pocket the

difference, see Figure 3.4. Note that this is not ideal for the network as it

introduces a spurious hop in routing, i.e., in relaying without increasing

the proximity.

Figure 3.4: Price arbitrage. Nodes keep a price table for prices of every proximity

order for each peer. The diagram shows node 0101 trying to forward a retrieve

request for 0000. The arrows originate from the closest node, and point to cells

where other peers although further from the chunk, offer cheaper to forward.

Choosing the cheaper peer will direct traffic away from the overpriced peer and

lead to a pressure on both to adjust.

Similarly, peers of A in shallower bins that have lower price than A for

their respective bins, e.g., B in bin n −1 being cheaper than A in bin n,

then A can always forward any request to B and pocket the difference.

Now let’s assume that all peers have price tables which are monotoni-

cally decreasing as PO decreases. Also assume that shallower bins have

higher prices for bins less than n, and all deeper peers in bins higher

than n have the same prices for n. Let B , C , D and E be the peers in bin

n densely balanced. A wants to forward a chunk to a peer so that the

86 CHAPTER 3. INCENTIVES

PO with its target address increases by 3. If peers B and C attempt to

collude against A and raise the price of forwarding chunks to bin n +3,

they are still bound by D and E ’s price on PO bin n +2. In particular, if

they are lower than B and C for n +3.

Such price discrepancies offer nodes an arbitrage opportunity; the strat-

egy to forward to the cheapest peer will direct traffic away from ex-

pensive peers and increase traffic for cheaper ones. As a consequence,

prices will adjust.

All else being equal, this price arbitrage strategy will achieve (1) uniform

prices for the same proximity order across the network, (2) prices that

linearly decrease as a function of proximity (3) nodes can increase con-

nectivity and keep prices lower. In this way, incentivisation is designed

so that strategies that are beneficial to individual nodes are also neatly

aligned in order to benefit the health of the system as a whole.

Bin density

Charging based on the downstream peer’s proximity to the chunk has

the important consequence that the net revenue earned from a single act

of non-local delivery to a single requestor is a monotonically increasing

function of the difference between the chunk’s proximity to the node

itself and to the peer the request was forwarded to. In other words, the

more distance we can cover in one forward request, the more we earn.

This incentive aligns with downloaders’ interest to save hops in serving

their requests, leading to lower-latency delivery and reduced bandwidth

overhead. This scheme incentivises nodes to keep a gap-free balanced

set of addresses in their Kademlia bins as deep as possible (see Figure

2.4), i.e, it is better for a node to keep dense Kademlia bins than thin

ones.

Nodes that are able to maintain denser bins actually have the same cost

as thinner ones, but saving hops will improve latency and make the peer

more efficient. This will lead to the peer being preferred over other peers

that have the same prices. Increased traffic essentially can also lead to

bandwidth contention, which eventually allows the raising of prices.

CHAPTER 3. INCENTIVES 87

Note that such arbitrage is more efficient in shallow bins where the

number of peers to choose from is higher. This is in major opposition

to deep bins in the area of responsibility. If a node does not replicate

its neighbourhood’s chunks, some of these chunks will need to be re-

quested by the node closer to the address, but further from the node.

This will only be possible at a loss. An added incentive for neighbours

to replicate their area of responsibility is discussed in 3.4. With the area

of responsibility stored however, a node can choose to set their price

arbitrarily.

Caching and auto-scaling

Nodes receive a reward every time they serve a chunk, therefore the

profitability of a chunk is proportional to its popularity: the more often

a chunk is requested, the higher the reward relative to the fixed cost

of storage per time unit. When nodes reach storage capacity limits

and need to decide which chunks to delete, a rational agent seeking to

maximise profit would opt to remove chunks with the lowest profitability.

A reasonably2 good predictor for this is the age of last request. In order to

maximise the set of chunks to select from, nodes engage in opportunistic

caching of the deliveries they relay as well as the chunks they sync. This

results in popular chunks being more widely spread and faster served,

transforming the whole of Swarm into an auto-scaled and auto-balanced

content distribution network.

Non-caching nodes

Any scheme that ensures relaying nodes make a profit creates a positive

incentive for forwarding-only non-caching nodes to enter the network.

Such nodes are not inherently beneficial to the network as they are creat-

ing unnecessary bandwidth overhead. On the one hand, their presence

could, in principle, unburden storer nodes from relaying traffic, so using

them in shallow bins may not be detrimental. On the other hand, closer

2Better metrics for predicting chunk profitability than the age of last request will

continue to be identified and developed.

88 CHAPTER 3. INCENTIVES

to neighbourhood depth, their peers will favour a caching/storing node

to them because of their disadvantage at least for chunks in their hypo-

thetical area of responsibility. Non-caching nodes can also contribute

to increase anonymity (see 2.3.1).

3.1.3 Incentivising push-syncing

The push-sync (see 2.3.2) protocol ensures that chunks uploaded into

the network arrive at their designated address. In what follows, we will

explain how forwarding is incentivised. 3

Push-syncing is analogous to the retrieval protocol in the sense that

their respective message exchange sequences travel the same route.

The delivery of the chunk in the push-sync protocol is analogous to a

retrieval request and, conversely, the statement of custody receipt in

push-sync is analogous to the chunk delivery response in retrieval.

In principle, push-syncing could be left without explicit forwarding

incentives. Due to the retrieval protocol, as nodes expect chunks to be

found in the neighbourhood of their address, participants in Swarm are

at least weakly incentivised to help deliver uploaded chunks to their

destination. However, we need to provide the possibility that chunks are

uploaded via nodes further from it than the requestor (light nodes or

retries). Thus, if push-syncing was free, nodes could generate wasteful

amounts of bandwidth.

Requiring payment only for push-sync delivery by downstream peers

would put the forwarder in a position to bargain with a storer node re-

garding the delivery of the chunk. The possession of a chunk is valuable

for the prospective storer node because there is also a system of rewards

for storage (see 3.4). Based on this, the forwarder node could, in theory,

hold onto the chunk unless the storer node pays marginally more than

the value of possessing that chunk, factoring in the profit potential due

3To complement our solution for bandwidth compensation, further measures are

needed for spam protection and storage incentivisation which are discussed later in

3.3 and 3.4, respectively.

CHAPTER 3. INCENTIVES 89

to storage incentives. In particular, since forwarders on the route from

the uploader are not numerous, any profits generated from a storage

reward mechanism might be captured by these forwarding nodes.

Instead, in push-sync, by making the statement of custody receipt a

paid message, the roles switch. The forwarder node is no longer in the

position to bargain. To understand why, let’s consider a scenario where

a forwarding node tries to hold on to a chunk to negotiate a price for

pushing it to a storer node. In this case, the uploader will not get a

statement of custody receipt within the expected time frame. As a result,

the uploader will assume that the attempt has failed and re-upload

the chunk via a different route. Now, suddenly the original forwarding

node is forced to compete with another forwarding node in getting

compensation for their bandwidth costs. Since all forwarding nodes

are aware of this dynamic, emergent behaviour will produce a series

of peers that are willing to forward the chunk to the storer node for a

relatively small compensation and the bandwidth costs incurred. This

eliminates the need for the original forwarding node to try and bargain

with the storer node in the first place: Instead, they can generate a small

profit immediately by simply returning the statement of custody receipt.

Figure 3.5: Incentives for push-sync protocol. Node U (uploader) sends the

chunk towards its address, the closest node to which is node S (storer) via for-

warding nodes F0, . . .Fn . The storer node responds with a statement of custody

receipt which is passed back to the uploader via the same forwarding nodes

Fn , . . .F0. Receiving the statement of custody receipt triggers an accounting

event.

90 CHAPTER 3. INCENTIVES

This scheme highlights why the incentivisation of the two protocols

relies on the same premises: there are many sellers (forwarders) and

only one buyer (uploader) for a homogeneous good (the statement of

custody receipt). As a result, the price of the service (delivering the

chunk to the storer) is determined by the sum of the marginal costs of

forwarding for each node along the route. At the same time, the storer

node can capture all the profits from the storage compensation scheme.

In this way, we can make sure that (1) storers actually respond with

receipts, and (2) have a way to detect timed out or unsolicited receipt

responses to protect against DoS, see Figure 3.5.

Similar to the retrieval protocol, the pricing in this scheme is expected to

vary based on different proximities (see 3.1.2). Additionally, as the costs

of the nodes in the network fluctuate (depending on capacity utilization

and node efficiency), the pricing will also be subject to change over time.

Given that the compensation is calculated for one chunk and one shorter

message (retrieve request and custody receipt) during the accounting

process, we can safely conclude that the price structure for forwarding

for both protocols is identical. Consequently, a unified pricing scheme

for forwarding can be applied to both protocols, as discussed in 3.1.2.

What distinguishes push-sync from the retrieval protocol is that, unlike

in retrieval where the chunk is delivered back and its integrity can be

validated, the accounting event in push-sync is a statement of custody

which can be spoofed. Due to the forwarding incentive, nodes may

be motivated to withhold forwarding and impersonate a storer node

by issuing the statement of custody. This makes it advisable to query

(retrieve) a chunk via alternative routes. If such retrieval attempts fail,

it may be necessary to try push-syncing chunks through alternative

routes.

3.2 Swap: accounting and settlement

This section covers aspects of incentivisation relating to bandwidth shar-

ing. In 3.2.1, we introduce a mechanism to keep track of the data traffic

between peers and offer peer-to peer-accounting for message relaying.

Subsequently, in 3.2.2, we describe the conditions of compensating for

CHAPTER 3. INCENTIVES 91

unbalanced services and show how settlement can be achieved. In par-

ticular we introduce the concept of a. cheques and the chequebook

contract. In 3.2.3, we discuss waivers as an optimisation that allows for

additional savings on transaction costs. In 3.2.4 we discuss how an in-

centivised service of sending in cashing transactions enables zero-cash

entry to Swarm and, finally, in 3.2.5 we delve into the fundamental set

of sanctions that serve as incentives for nodes to play nice and adhere

to the protocols.

3.2.1 Peer to peer accounting

Trón et al. (2016) introduce a protocol for peer-to-peer accounting,

called swap. Swap is a tit-for-tat accounting scheme that scales micro-

transactions. The scheme allows directly connected peers to swap pay-

ments or payment commitments. The system’s key characteristics are

captured playfully with different mnemonic resolutions of the acronym

SWAP:

Swarm accounting protocol

A scheme used by Swarm for keeping a record of reciprocal sharing

of bandwidth.
service wanted and provided

Allows service exchange.
settle with automated payments

Send a cheque when payment threshold is exceeded.
send waiver as payment

Debt can be waived in the value of un-cashed cheques.
start without a penny

Zero-cash entry is supported by unidirectional swap.

Service for service

swap allows service for service exchange between connected peers.

When there is equal consumption with low variance over time, bidirec-

tional services can be accounted for without the need for any payments.

Data relaying is an example of such a service, making Swap well-suited

92 CHAPTER 3. INCENTIVES

for implementing bandwidth incentives in content delivery or mesh

networks.

zero

balance

payment

threshold

for peer

B

payment

threshold

for peer

A

disconnect

threshold

for peer

B

disconnect

threshold

for peer

A

current

channel

balance

Figure 3.6: Swap balance and swap thresholds. Zero balance in the middle

indicates the equal consumption and provision of services. The current chan-

nel balance represents the difference in uncompensated service provision: If

the balance is to the right of zero, it tilts in favour of A with peer B being in

debt, whereas to the left, the balance tilts in favour of B with A being in debt.

The orange interval represents loss tolerance. When the balance exceeds the

payment threshold, the party in debt sends a cheque to its peer. If it reaches

the disconnect threshold, the peer in debt is disconnected.

Settling with payments

In situations where there is high variance or unequal consumption of

services, the balance will eventually tilt significantly toward one peer. In

such cases, the indebted party issues a payment to the creditor to restore

the nominal balance to zero. This process is automatic and justifies the

concept of swap as settle (the balance) with automated payments (see

Figure 3.6). These payments can be in the form of commitments rather

than immediate transactions.

Payment thresholds

To quantify what counts as "significant tilt", the swap protocol requires

peers to advertise a payment threshold as part of the handshake: When

their relative debt to their peer goes above this threshold, they send a

message containing a payment to their peer. It is reasonable for any

node to send a message when the debt reaches this level, as there is also

CHAPTER 3. INCENTIVES 93

a disconnect threshold in place. The disconnect threshold can be set

freely by any peer, but it is recommended to choose a value that takes

into account the usual variance in accounting balances between the

two peers. This can be done by considering the difference between the

payment threshold and the disconnect threshold.

Atomicity

Sending the cheque and updating the balance on the receiving side can-

not be made an atomic operation without substantial added complexity.

For instance, a client could crash between receiving and processing

the message, so even if the sending returns with no error, the send-

ing peer can not be sure the payment was received, this can result in

discrepancies in accounting on both sides. The tolerance expressed

by the difference between the two thresholds (DisconnectThreshold−
PaymentThreshold) guards against this, i.e. if the occurrence of such

crashes is infrequent and happens with roughly equal probability for

both peers, the resulting minor discrepancies are filtered out. This

mechanism protects nodes from facing sanctions.

n

C

swap

cheques

=⇒
0

C +n

Figure 3.7: Peer B’s swap balance (with respect to A) reaches the payment

threshold (left), B sends a cheque to peer A. B keeps the cheque and restores

the swap balance to zero.

3.2.2 Cheques as off-chain commitments to pay

One of the major challenges with conducting direct on-chain payments

in a blockchain network is the high transaction costs associated with

processing each transaction by every participating node. It is, however,

94 CHAPTER 3. INCENTIVES

possible to create a payment without presenting this payment on-chain.

Such payments are called second-layer payment strategies. One such

strategy is deferring payments and processing them in bulk. In exchange

for reduced cost, the beneficiary must be willing to incur a higher risk

of settlement failure. We argue that this is perfectly acceptable in the

case of bandwidth incentivisation in Swarm, where peers will engage in

repeated dealings.

The chequebook contract

A simple smart contract called the chequebook contract, introduced

in Trón et al. (2016), allows the beneficiary to determine the timing of

payments. This contract acts as a wallet that can process cheques issued

by its owner. Similar to traditional financial transactions, the issuer

signs a cheque specifying the beneficiary, date, and amount, providing it

to the recipient as a token of promise to pay at a later date. The smart

contract plays the role of the bank. When the recipient wishes to get

paid, they "cash the cheque" by submitting it to the smart contract. The

contract, after validating the signature, date and the amount specified

on the cheque, transfers the amount to the beneficiary’s account (see

Figure 3.8). Analogous to the person taking the cheque to the bank to

cash it, anyone can send a digital cheque in a transaction to the owner’s

chequebook account, initiating the transfer.

The swap protocol specifies that when the payment threshold is ex-

ceeded, a cheque is sent over by the creditor peer. Such cheques can be

immediately cashed by sending them to the issuer’s chequebook con-

tract. Alternatively, cheques can also be held, which effectively serves

as a form of lending on credit, enabling parties to save on transaction

costs.

The amount deposited in the chequebook (global balance) serves as

collateral for the cheques and is pooled over the beneficiaries of all

outstanding cheques. In this simplest form, the chequebook provides

the same guarantees as real-world cheques: None. Since funds can be

freely moved out of the chequebook wallet at any time, solvency at the

time of cashing can never be guaranteed: If the chequebook’s balance

CHAPTER 3. INCENTIVES 95

is less than the amount specified in a submitted cheque, the cheque

will bounce. This is the trade-off between transaction costs and risk of

settlement failure.

While, strictly speaking, there are no guarantees for solvency, nor is there

an explicit punitive measure in the case of insolvency, a bounced cheque

can negatively impact the issuer’s reputation as the chequebook contract

records such incidents. On the premise that cheques are swapped in the

context of repeating dealings, peers will refrain from issuing cheques

beyond their balance. In other words, a node’s interest in keeping a good

reputation with their peers serves as a sufficient incentive to maintain

its solvency.

A client A swap B swap B client

issue cheque

redeem cheque

clear ETH
withdrawal

event

deposit

event

On-chain

Off-chain

Figure 3.8: The basic interaction sequence for swap chequebooks

Double cashing

Since these digital cheques are files and can therefore be copied, it is cru-

cial to implement measures to prevent the cashing of the same cheque

multiple times. Such "double cashing" can be prevented by assigning

each cheque given to a particular beneficiary a serial number which the

contract will store when the cheque is cashed. The chequebook contract

can then rely on the serial number to make sure cheques are cashed in

96 CHAPTER 3. INCENTIVES

sequential order, thus needing to store only a single serial number per

beneficiary.

Alternatively, to address repeated payments to the same beneficiary,

the cheques can contain the cumulative total amount ever credited to

that beneficiary. The contract maintains a record of the total amount

that has been cashed out for each beneficiary, and when a new cheque

is submitted, the contract compares the amount on the cheque to the

stored total. Cheques with an amount equal to or less than the stored

total are ignored, while cheques with a higher total will result in the

transfer of the difference to the beneficiary.

This simple trick also makes it possible to cash cheques in bulk because

only the most recent "last cheque" needs to be processed, leading to a

significant reduction of transaction costs.

Cashing without Ether

Not all peers in Swarm are expected to have the Ether needed to pay for

the transaction costs to cash out a cheque. The chequebook allows third

parties to cash cheques. The sender of the transaction is incentivised

with a reward for the service performed.

3.2.3 Waivers

If the imbalance in the swap channel is due to high variance rather

than unequal consumption, after a period of accumulating cheques,

the channel balance starts tilting in the opposite direction. Normally,

it is now up to the other party to issue cheques to its peer, resulting

in uncashed cheques accumulating on both sides. To allow for further

savings in transaction costs, it might be desirable to be able to offset

these cheques against each other.

Such a process is possible, but it requires certain important changes

within the chequebook contract. In particular, cashing cheques can no

longer be immediate and must incur a security delay, a concept familiar

from other payment channel implementations (Poon and Dryja 2015,

Ferrante 2017, McDonald 2017, Tremback and Hess 2015).

CHAPTER 3. INCENTIVES 97

Let us imagine a system analogous to cheques being returned to the

issuer. Assume peer A issued cheques to B and the balance was brought

back to zero. Later, the balance tilts in A’s favour, but the cheques from A

to B have not been cashed. In the traditional financial world, B could ei-

ther simply return the last cheque to A or provably destroy it. In our case,

it is not so simple; we need some other mechanism by which B commits

not to cash that particular cheque. Such a commitment could take sev-

eral forms; it could be implemented by B signing a message allowing

A to issue a new ‘last cheque‘ with a lower cumulative total amount

than before, or perhaps B could issue a form of ‘negative‘ cheque for A’s

chequebook, effectively offsetting the amount as if a cheque with the

same amount had been paid.

These implementations share the characteristics of not allowing the

instantaneous cashing of cheques in the chequebook. Upon receiving a

cheque-cashing request, the contract must wait to allow the other party

to submit potentially missing information about cancelled cheques or

reduced totals. To accommodate (semi-)bidirectional payments using a

single chequebook, we introduce the following modifications:

— All cheques from user A to user B must contain a serial number.

— Each new cheque issued by A to B must have a serial number

higher than the previous one.

— A’s chequebook contract records the serial number of the last

cheque that B cashed.

— During the cashing delay, any valid cheque with a higher serial

number supersedes any previously submitted cheques, regardless

of their face value.

— Any submitted cheque which decreases the payout of the previ-

ously submitted cheque is only valid if it is signed by the benefi-

ciary.

With these rules in place, it is easy to see how cheque cancellation would

work. Let’s consider the scenario where user A has issued cheques

c0 . . .cn with cumulative totals t0 . . . tn to user B . Suppose that the last

cheque B cashed was ci . The chequebook contract has recorded that B

98 CHAPTER 3. INCENTIVES

Figure 3.9: Example sequence of mixed cheques and waivers exchange

CHAPTER 3. INCENTIVES 99

has received a payout of ti and that the last cheque cashed had serial

number i .

Let us further suppose that the balance starts tilting in A’s favour by

some amount x. If B had already cashed cheque cn , then B would be re-

quired to issue a cheque of her own using B ’s chequebook as the source

and naming A as the beneficiary. However, since cheques ci+1 . . .cn are

still uncashed, B can instead send to A a cheque with A’s chequebook as

the source, B as the beneficiary, with serial number n+1 and cumulative

total tn+1 = tn −x. Due to the rules enumerated above, A will accept this

as an equivalent payment of amount x from B . In this scenario, instead

of sending a cheque to A, B waives part of their earlier entitlement. This

justifies the concept of SWAP as send waiver as payment.

This process can be repeated multiple times until the cumulative total

is brought back to ti . At this point, all outstanding debt has effectively

been cancelled, and any further payments must be made in the form of

a proper cheque from B ’s chequebook to A (see Figure 3.9).

3.2.4 Zero cash entry

Swap accounting can also work in a one-directional manner. When

a party enters the system with zero liquid capital (a newcomer) but

connects to a peer with funds (an insider), the newcomer can begin

to provide a service (and not use any) in order to earn a positive swap

balance.

If the insider has a chequebook, they are able to simply pay the new-

comer with a cheque. However, this has a caveat: The newcomer will

be able to earn cheques for the services provided but will not have the

means to cash them. Cashing cheques requires sending a transaction to

the blockchain, and therefore requires gas, unless the node can convince

one of its peers to execute the transaction on its behalf. To facilitate this,

nodes are able to sign off on a structure that they want to be sent, and

then extend the Swap contract with a preprocessing step that triggers

payment to the newcomer, covering the transaction’s gas cost plus a

service fee for the sender of the transaction. The newcomer’s cheque

100 CHAPTER 3. INCENTIVES

may be cashed by any insider (see Figure 3.10). This feature justifies the

concept of SWAP as start without a penny, send with a peer.

Newcomer Newcomer swap Insider

Connect

Consume service

Consume service

Consume service

Create contract

Contract

creation

thresh-

old

reached

Figure 3.10: Bootstrapping or how to launch as a swap capable node consuming

and providing a service and earn money.

The possibility to earn small amounts of money without starting capital

is crucial, as it provides a way for new users to get access to Swarm

without the need to purchase the token. This benefit extends to the

Ethereum ecosystem in general: using Swarm, anybody can earn small

amounts of money to start paying the gas to fuel their dapps, without

the need to go through a painful process of acquiring tokens prior to

onboarding.

3.2.5 Sanctions and blacklisting

This section complements the SWAP scheme with additional incentives

and protection against foul play.

CHAPTER 3. INCENTIVES 101

Protocol breach

In a peer-to-peer trustless setting, implementing nuanced sanctions

against undesired peer behaviour can be challenging. However, when

the basic rules of interaction are violated, the node that detects it can

simply disconnect from that peer. In order to avoid deadlocks due to

attempted reconnection, the sanctions imposed on transgressive nodes

also include recording the peer’s address into a blacklist. This simple

measure is enough to provide a clear disincentive to nodes seeking to

exploit the protocol.

Excessive frivolity

Both retrieval and push-sync protocols have an incentive structure

where only the response to a request generates income. Although this

creates a strong incentive to play ball, it may also be necessary to take

measures to ensure that nodes are not able to spam the network with

frivolous requests that have no associated cost. In the case of push-

syncing, it is especially important not to allow chunks to expunge others

at no cost. This will form the topic of a later section where we introduce

postage stamps (see 3.3).

In the case of pull-sync retrieval, the potential attack consists of request-

ing non-existing chunks and causing downstream peers to initiate a

lot of network traffic, as well as some memory consumption, due to

requests being persisted during the time-to-live period. Surely, there

is a possibility that a requestor may unknowingly request non-existing

chunks, and what is more, the requested chunk could have been be

garbage-collected in the network, in which case, the requestor may have

acted in good faith.

To mitigate this, each node maintains a record of the number of retrieve

requests from each of its peers and then updates the relative frequency

of failed requests, i.e. requests that have timed out even though the

node in question had forwarded it. If the proportion of failed requests to

successful requests exceeds a certain threshold, sanctions are imposed

on the peer: it is disconnected and blacklisted.

102 CHAPTER 3. INCENTIVES

By remembering the requests they have forwarded, nodes can distin-

guish legitimate responses from a potential DoS attack: for retrieval, if

the chunk delivered does not fulfil an open request, it is considered unso-

licited; for push-sync, if a statement of custody response does not match

an existing entry for forwarded chunk, it is considered unsolicited.

Timeouts are crucial here. After the time-to-live period for a request has

passed, the record of the open request can be removed. Any response re-

ceived after this point is considered unsolicited, as it is indistinguishable

from messages that were never requested.

To account for slight discrepancies in time measurement, once again

a small percentage of illegitimate messages are tolerated from a peer

before they are disconnected and blacklisted.

Quality of service

Beyond the rate of unsolicited messages, nodes can cause grievances on

other ways, such as by setting high prices, having low network through-

put, or long response latencies. Similarly to excessively frivolous re-

quests, there is no need for a distinction between malicious attacks or

sub-optimal (poor quality, overpriced) service provided in good faith. As

a result, mitigating quality of service issues is discussed in the context

of peer selection strategies in forwarding and connectivity.

Blacklisting

Blacklisting is a strategy that complements disconnection as a measure

against peers. It is supposed to extend our judgment expressed in the act

of disconnection that the peer is unfit for business. Blacklists serve as a

reference when accepting incoming connections as well as in the peer

suggestion strategy of the connectivity driver. On the one hand, black-

listing can save the node from being deadlocked in a cycle of malicious

peers trying to reconnect. On the other hand, care must be taken not

to blacklist peers acting in good faith, as this could negatively impact

network connectivity.

CHAPTER 3. INCENTIVES 103

3.3 Postage stamps

A postage stamp is a verifiable proof of payment associated with a chunk

witnessed by the signature of its owner. It serves two purposes: prevent-

ing frivolous uploads by imposing an advance cost, and indicating the

relative importance of a chunk by ascribing a specific amount of BZZ to

it. Storer nodes can then use this information to prioritise which chunks

to retain and serve, as well as which ones to garbage-collect in case of

limited capacity.

In this section, we first introduce the concept of a postage batch, which

allows for the bulk purchase of stamps (3.3.1). In 3.3.2, we explain how

limited issuance is represented and enforced. In 3.3.3, we introduce the

notion of a reserve and outline the rules governing how storer nodes can

maximise its utilisation. We conclude in 3.3.4 with exploring the rela-

tionship between reserved capacity, effective demand, and the number

of nodes and their impact on the data availability.

3.3.1 Purchasing upload capacity

Uploaders can acquire postage stamps in bulk by purchasing a postage

batch from the postage smart contract on the Ethereum blockchain. The

creation of a postage batch involves initiating a transaction to the batch

creation endpoint of a contract, along with an amount of BZZ tokens

and transaction data that specifies some parameters. As the transaction

is processed, the postage contract registers a new batch entry with the

following pieces of information:

batch identifier

A randomly generated ID that serves as a reference for this batch.
batch depth

Base 2 logarithm of the issuance volume, i.e., the number of chunks

that can be stamped using this batch.

owner address
The Ethereum address of the owner entitled to issue stamps, as per

the transaction data sent along with the creation or the transaction

sender if not specified.

104 CHAPTER 3. INCENTIVES

per-chunk balance

The total amount sent along with the transaction divided by the

issuance volume.
mutability

A boolean flag indicating whether the storage slots of the batch can

be reassigned to another chunk with a stamp if its timestamp is

older.
uniformity depth

the base 2 logarithm of the number of equal-sized buckets the stor-

age slots are arranged in.

The postage contract provides endpoints to users to modify the per-

chunk balance of batches. This allows users to add funds to extend the

validity period of the stamps issued by the batch (top-up) or add volume

to decrease it (dilute). While anyone can choose to top up the balance

of a batch at a later date, only the owner has the authority to dilute it.4

Figure 3.11: Postage stamp is a data structure comprised of the postage con-

tract batch id, storage slot index, timestamp the chunk address and a witness

signature attesting to the association of these four. Uploaders and forwarders

must attach a valid postage stamp to every chunk uploaded.

Owners issue postage stamps in order to attach them to chunks. Each

batch has a number of storage slots effectively arranged into a number

of equal-sized buckets. Issuing a stamp means to assign a chunk to a

storage slot. A stamp is a data structure comprising the following fields

(see Figure 3.11):

4As a planned feature, the remaining balance of a batch can be reassigned to a new

batch, resulting in the immediate expiry of the original.

CHAPTER 3. INCENTIVES 105

chunk address
The address of the chunk the stamp is attached to.

batch identifier

The ID referencing the issuing batch (generated at its creation).
storage slot

A bucket index referencing one of the equal-sized buckets of the

batch, and a within-bucket index referencing the storage slot the

chunk is assigned to.
timestamp

The time the chunk is stamped.

witness
The batch owner’s signature attesting to link between the storage

slot and the chunk.

A postage stamp’s validity can be checked by verifying that it scores all

true on the following five attributes:

authentic
The batch identifier is registered in the postage contract’s storage.

alive
The referenced batch has not yet exhausted its balance.

authorised
The postage stamp is signed by the address specified as the owner

of the batch.

available
The referenced storage slot is within valid range based on the batch

depth, and, in the case of an immutable batch, has no duplicates.
aligned

The referenced storage slot has the bucket specified and it aligns

with the chunk address stamped.

All this can be easily checked by nodes in Swarm only using informa-

tion available on the public blockchain (read-only endpoints of the

postage contract). When a chunk is uploaded, the validity of the at-

tached postage stamp is verified by forwarders along the push-syncing

route (see Figure 3.12).

106 CHAPTER 3. INCENTIVES

Figure 3.12: Postage stamps are purchased in bulk on the blockchain and

attached to chunks at upload. They are passed along the push-syncing route

together and their validity is checked by forwarders at each hop.

The normalised per-chunk balance of a batch is calculated as the batch

inpayment divided by the batch size in chunk storage slots. The chunk

balance is interpreted as an amount pre-committed to be spent on

storage. The balance decreases with time as if storage rent was paid for

each block at the price dictated by the price oracle contract.

This system of prepayment for storage eliminates the need to speculate

on the future price of storage or fluctuations in currency exchange rates.

At the cost of decreased certainty about the expiration date, one gains

resilience against price volatility. On top of this, uploaders can enjoy the

luxury of non-engagement by tying up more of the batch balance; while

it serves as collateral against price increase, if that does not happen the

funds can still be used up (for storing).

3.3.2 Limited issuance

Purchasing a postage batch effectively entitles the owner to issue a fixed

amount of postage stamps against the batch ID called the issuance

volume or batch size. It is restricted to the powers of 2 and is specified

using the base 2 logarithm of the amount which is called batch depth.

CHAPTER 3. INCENTIVES 107

The storage slots within a batch are arranged into buckets, and each slot

is assigned an index within its respective bucket. The number of buckets

is restricted to the powers of 2 and is specified using its base 2 logarithm

called uniformity depth. To ensure the size limitation of a batch with

batch depth d and uniformity depth u, the following conditions must

be met:

— the bucket index ranges from 0 to 2u −1.

— the within-bucket index ranges from 0 to 2d−u −1.

— there are no duplicate indexes.

While the first two criteria are easily verifiable by any third party, the

last one is not. In order for index collisions to be detectable by indi-

vidual storer nodes, the uniformity depth must be large enough to fall

within the nodes’ area of responsibility. As long as this condition is

maintained, all chunks in the same bucket are guaranteed to land in the

same neighbourhood, and, as a result, duplicate assignments can be

locally detected by nodes (see Figure 3.13).

In order to keep their stamps collision-free, uploaders need to maintain

counters for how many stamps they have issued for each bucket within

a batch and ensure that the number does not exceed the maximum

bucket size.

In general, the most efficient utilisation of a batch is by filling each

bucket to its capacity. Continued non-uniformity (i.e., targeted issuance)

leads to underutilised batches, and therefore a higher unit price for

uploading and storing each chunk. This feature has the desired side

effect that it imposes an upfront cost to non-uniform uploads: the more

concentrated the distribution of chunks in an upload, the more unused

storage slots in the postage batch. In this way, we ensure that targeted

denial-of-service attacks against a neighbourhood (i.e., uploading a

disproportionate number of chunks in a particular address range) is

costly since the inert cost (due to the degree of under-utilisation of the

batch) is exponential in the depth of the skew.

Beyond DoS protection, postage stamps can serve as a fiduciary signal

indicating how much it is worth for a user to persist a chunk in Swarm.

108 CHAPTER 3. INCENTIVES

Figure 3.13: Batches come with 2u equal-sized buckets (u is uniformity depth,

marked by the orange circle) each containing an equal number of storage slots

(2d−u) adding up to batch capacity of 2d chunks (d is batch depth, marked by

the red circle). The storage slots are indexed and each index is associated with

a chunk via the stamp signature. Storer nodes can locally detect postage stamp

over-issuance as long as the buckets are deeper than their storage depth (green

circle), as in the diagram on the left. In this case, they will receive all the chunks

that are correctly assigned to the relevant bucket (orange radii) and correctly

identify collisions (red radii) by forbidding indexes that are either out of range

(≥ 2d−u) or multiply assigned. In contrast, the diagram on the right shows that

it is not possible for a node with a storage depth of 4 to identify duplicates for a

batch with u = 2.

In particular, the per-chunk balance of batches can provide the differen-

tial a priori bias, determining which chunks should be protected from

garbage collection when there is no evidence available to predict their

profitability from swap.

3.3.3 Rules of the reserve

The reserve refers to a fixed size of storage space dedicated to storing

the chunks within a node’s area of responsibility. Chunks within the re-

serve are protected against garbage collection as long as they have valid

postage stamps. When batches expire, i.e., their balance is fully depleted,

the chunks they stamped are no longer protected from eviction. Their

eviction from the reserve frees up some space that can accommodate

new or more distant chunks belonging to valid batches.

CHAPTER 3. INCENTIVES 109

From the point of view of incentives, chunks within the same proximity

order and the same batch are considered equivalent. When it comes

to eviction due to batch expiry, these equivalence classes, called batch

bins, are handled as a single unit: the chunks in a batch bin are evicted

from the reserve and inserted into the cache in one atomic operation.

Assuming a global oracle for the unit price of rent and a fixed reserve

capacity prescribed for nodes, the content of the reserve is coordinated

according to a set of constraints on batch bins called the rules of the

reserve:

1. if a batch bin of a certain PO is reserved, then all batch bins at

closer proximity orders (higher PO) are also reserved.

2. if a batch bin is reserved at a certain proximity order (PO), then

all batch bins at the same PO belonging to batches with a higher

per-chunk balance are also reserved.

3. the reserve should not exceed capacity.

4. the reserve should be maximally utilised, i.e, it cannot be extended

while still adhering to rules 1-3.

The first rule means the reserve is closed upwards for PO, which en-

codes a global preference for storing chunks that are closer to the node’s

address. This is incentivised by routing: keeping the closest chunks, a

node will maximise the number of receipts it can issue and the num-

ber of retrieve requests it can respond to. Additionally, storing closer

chunks ensures wider coverage within the neighbourhood, even when

the neighbourhood no longer provides the desired redundancy.

The second rule expresses the constraint that the reserve for a PO is up-

ward closed for per-chunk balance. This constraint reflects a secondary

preference among chunks of the same proximity, favouring those that

are stamped using a batch with higher per-chunk balance. This is in-

centivised by the differential absolute profit that chunks promise: due

to the constraint that balances are not revocable, chunks with higher

balances expire later and therefore provide greater absolute profit to

110 CHAPTER 3. INCENTIVES

storers compared to chunks with earlier expiration dates, despite both

paying the same rent during their period of validity.5

Figure 3.14: The total size of all batches with non-zero balance on the

blockchain (left) indicates the potential demand for chunk storage. The lower

bound on neighbourhood depth to store this capacity is the reserve depth (top

right). The storage depth represents the effective volume of chunks uploaded

and stored in a neighbourhood’s reserve (bottom right). The difference between

them is a result of partial batch utilisation. The uniformity of the volume of

chunks across neighbourhoods is incentivised by the efficient utilisation of

postage batches.

5Note that even if there was no scheme for redistributing postage revenue and the

inpayments are frozen/burnt, this strategy is still mildly incentivised in as much as

it is aligned with the interests of token-holders: batches with higher balance exert

more deflationary force on the token (per chunk, i.e, the unit of invested resource)

by keeping their balance frozen, which is expected to realise in a proportional price

increase.

CHAPTER 3. INCENTIVES 111

When a new chunk arrives in Swarm through pull-sync, push-sync, or

upload, the validity of the attached postage stamp is verified. If the PO

of the chunk is lower than the batch depth, the node inserts the chunk

into the garbage collection index, indicating that it can be subject to

garbage collection. On the other hand, if the PO is equal to or greater

than the batch depth, the chunk is considered to be in the reserve. If the

reserve size exceeds the designated capacity, a number of batch bins are

identified whose combined size is sufficient to cover the excess. These

batch bins will be evicted from the reserve, reducing its size to meet the

capacity requirement.

3.3.4 Reserve depth, storage depth, neighbourhood depth

Reserve depth

The potential demand for chunks to be stored in the DISC is quantified

by the total number of storage slots in valid batches. This is calculated

as the sum of the sizes of all non-expired batches. Since the batches and

their balances are recorded in the postage contract, the reserved size of

the DISC is agreed upon through consensus.6

The reserve depth is determined by taking the base 2 logarithm of the

DISC reserve size and rounding it up to the nearest integer. It represents

the shallowest PO at which disjoint neighbourhoods are collectively able

to accommodate the volume of data corresponding to the total number

of paid chunks. This assumes that nodes within the neighbourhood have

a fixed prescribed storage capacity to store their share of the reserve.

The reserve depth also serves as the safe lower bound for pull-syncing,

i.e, the farthest bin a neighbourhood needs to synchronise to guarantee

storing the reserve. Conversely, if any neighbourhood marked by reserve

6The volume is best explicitly maintained by the contract by adding the size of newly

created batches and deducting the sizes of expired batches. The DISC reserve size is

updated each time a batch is created or topped up, and expired batches are removed

during each redistribution round, executed as part of the process triggered by the

claim transaction.

112 CHAPTER 3. INCENTIVES

depth has no nodes in it, the swarm is not working correctly, i.e., chunks

with valid stamps are not being protected from getting lost. See Figure

3.15.

Storage depth

The effective demand for chunks to be stored in the DISC corresponds

to the total number of chunks actually uploaded. While each chunk in

the reserve is associated with a valid postage batch and assigned to a

storage slot, it is possible for a postage batch to have unassigned storage

slots. As a result, the number of chunks actually stored in the DISC may

be less than the DISC reserve size.

The effective area of responsibility is marked by the proximity order of

the farthest batch bin in the reserve, assuming the node complies with

the rules of the reserve.

A node’s storage depth is defined as the shallowest complete bin, i.e., the

lowest PO at which a compliant reserve stores all batch bins. Unless the

farthest bin in the node’s reserve is complete, the storage depth equals

the reserve’s edge PO plus one.

The storage depth is the optimal lower bound for pull-syncing, i.e, it indi-

cates the farthest bin the node needs to synchronise with its neighbours

to achieve maximum reserve utilisation.7 Maximum reserve utilisation

should be incentivised as part of the storage incentives.

The gap between actual storage depth and the reserve depth exists

because of the bulk purchase of stamps. Since entire batches of stamps

reserve storage slots that are assigned to chunks only at later times when

they are actually uploaded, the batch utilisation rate can be substantially

less than 1. Storage depth and reserve depth will be the same only when

all batches are fully utilised.

7The nodes will have full connectivity up to the shallowest bin that they are pull

syncing. This choice is incentivised by the risk of having two disjoint connected sets

of pull-syncing nodes resulting in non-consensual reserve. As a consequence, we can

say that storage depth is an upper bound on the depth of full connectivity.

CHAPTER 3. INCENTIVES 113

Neighbourhood depth

Swarm has a requirement on local replication, which states that each

neighbourhood designated by the storage depth should contain a mini-

mum of four nodes. If neighbourhoods were made of one node, then

the outage of that one node would make the chunks in the node’s area

of responsibility not retrievable. With two nodes in a neighbourhood,

we significantly improve resilience against ad-hoc outages, but because

of connectivity latencies a two-peer neighbourhood may still result in

an unstable user experience. The ideal scenario is to have four nodes

per full connectivity neighbourhood, which prompts the following defi-

nition: neighbourhood depth for a particular node is the highest PO d

such that the address range designated by the d-bit-long prefix of the

node’s overlay contains at least 3 other peers.

Figure 3.15 details the potential relative orders of the three depths and

their consequences on the health, efficiency, and redundancy of the

swarm.

3.4 Fair redistribution

The system of positive8 storage incentives in Swarm aims to redistribute

to storage providers the BZZ tokens that uploaders deposited within the

postage contract.9 The overall balance on the contract covers the reward

pot which represents the cumulative storage rent across all postage

batches for a particular period. The storage rent must be redistributed

to storage providers in a way that guarantees that their earnings are

proportional to their contribution, weighing in storage space, quality of

service, and length of commitment.

8The concept of positive incentives refers to a scheme whereby providers of a service

are entitled to reward but there is no loss involved if they discontinue their service or

are not online.
9As explained earlier, uploaders pay in an unwithdrawable amount to the postage

contract which serves as the balance to pay storage rent. In exchange they obtain

the right to issue a fixed number of postage stamps which they attach to chunks they

want the network to store.

114 CHAPTER 3. INCENTIVES

Figure 3.15: The 3 depths (reserve, storage, and neighbourhood) express the or-

der of magnitude of reserved capacity (potential demand, red circle), uploaded

chunks (effective demand, green circle), and the number of nodes (effective

supply, orange circle), respectively. Their possible orderings reflect various

scenarios that have distinct impacts on data availability. Storage depth cannot

be greater than the reserve depth. A gap between the storage depth and the

reserve depth quantifies the average batch utilisation rate. The gap between the

storage depth and a deeper neighbourhood depth quantifies the elasticity of

the storage: the difference expresses how many times the effective volume can

double before redundancy falls below the required level. While such oversupply

may be anticipatory of growth in demand, if the neighbourhood depth remains

deeper than the storage depth long term, it may indicate excessive profits. The

opposite order indicates undersupply (redundancy below the desired level).

The procedure for redistribution is best conceived of as a game orches-

trated by a suite of smart contracts on the blockchain. Nodes earn the

right to play through participation in storing and syncing chunks, and

the winners can claim their rewards by initiating a transaction with the

game contract.

In section 3.4.1, we formulate the idea of redistribution in terms of

probabilistic outpayments to allow an easy proof of fairness. We then

CHAPTER 3. INCENTIVES 115

proceed to outline the mechanics of the redistribution game in 3.4.2.

Sections 3.4.3 and 3.4.4 explain how we enforce maximum utilisation

of dedicated storage for persisting relevant content redundantly. We

conclude in 3.4.5 by discussing how to interpret certain aspects of the

game as price signals that render the network self-regulating through

automatic price discovery.

3.4.1 Neighbourhoods, uniformity and probabilistic out-

payments

In this section, we argue that the efficient use of postage batches in-

centivises a balanced chunk distribution which, in turn, gives rise to

uniform storage depth across neighbourhoods. We then explain how

this enables a fair system of redistribution using probabilistic outpay-

ments.

Assuming an oracle that sets the unit price of storage, it becomes possi-

ble to calculate the storage rent due for a specific period of time for a

given batch. The number of rent units for a batch is the result of mul-

tiplying the size of the batch by the number of blocks in the specified

period. The price of rent is calculated from the number of rent units

multiplied by the unit price.10 The total storage rent cumulated over all

batches for the period between two outpayments constitutes the reward

pot for the round.

Instead of dividing the reward pot among neighbourhoods regularly,

the entire reward pot can be transferred to (representative nodes in)

one target neighbourhood in each round. This probabilistic outpay-

ment scheme ensures fairness among neighbourhoods, as long as the

probability of selecting a neighbourhood as the target corresponds to

its relative contribution to the overall network storage. Given a constant

prescribed reserve capacity and replication of the reserve content by

10If this theoretical amount is less than the the current balance of the batch, then the

batch is expired and the effective rent is only the remaining balance.

116 CHAPTER 3. INCENTIVES

nodes within a neighbourhood, each neighbourhood, defined by storage

depth, contributes equally to the network.

In Section 3.3, we mentioned that uploaders have a strong incentive to

use their postage batch in a way that the chunks they stamp with it are

uniformly distributed across the address space. This being true of all

batches creates a situation that chunks are uniformly distributed across

the DISC. In particular, the sets of chunks sharing a common prefix are

expected to be roughly equal in size. Therefore we expect nodes to fill

their prescribed reserve capacity with chunks at the same proximity

order, irrespective of their location in the address space, i.e., the storage

depth is uniform across nodes and therefore across neighbourhoods.11

With neighbourhoods at equal depth, uniform sampling of neighbour-

hoods can be modelled by choosing the neighbourhood which contains

an anchor (called the the neighbourhood selection anchor) randomly

dropped in the address space (see Figure 3.16).

3.4.2 The mechanics of the redistribution game

The collaborative effort among peers to store data redundantly for the

network’s benefit is underpinned by a Schelling game aimed at proving

that the peers agree on the chunks they need to store and they do, in

fact, store them. The redistribution game is orchestrated by the game

contract, one of the building blocks of the system of 4 smart contracts

which collectively drive the swarm storage incentive system (see Figure

3.17):

Postage contract

serving as the batch store to sell postage batches to uploaders, keep-

ing track of batch balances, batch expiry, storage rent, and the re-

ward pot itself.

Game contract
orchestrates the redistribution rounds interacting with potential

11Differences do occur due to variance but over many rounds, deviation from the

mean is meant to be independent of the location.

CHAPTER 3. INCENTIVES 117

Figure 3.16: Neighbourhood selection and pot redistribution. The winning

locality is selected by the neighbourhood selection anchor. Neighbourhoods

that contain the anchor within their storage depth are invited to submit an

application by committing to a consensual reserve sample.

winners accepting commit, reveal, and claim transactions from

storage providers in selected neighbourhoods.
Staking contract

manages a stake registry, maintaining committed stake and stake

balance for nodes based on their overlay; enables freezing and slash-

ing of stake, as well as withdrawal of surplus balance for stakers.

Price oracle
maintains the unit price of storage rent, accepts signals from the

game contract to dynamically adjust according to supply and de-

mand, and provides current price oracle service for the other three

contracts.

The game is structured as a sequence of rounds. Each round lasts for

a fixed number of blocks and recurs periodically. A round consists of

118 CHAPTER 3. INCENTIVES

Figure 3.17: Interaction of smart contracts for swarm storage incentives. The

figure shows with the dotted line the information flow between the four con-

tracts comprising the storage incentive smart contract suite as well as the public

transaction types they accept.

3 phases: commit, reveal, and claim.12 The phases are named after

the type of transaction the smart contract expects during that partic-

ular phase and that nodes from the selected neighbourhood need to

submit.13 See Figure 3.18

Once the reveal phase is over, the neighbourhood selection anchor

becomes known. Nodes that have the anchor within their respective

neighbourhoods14 are eligible to participate in the following round (see

Figure 3.16).

12The commit and reveal phases are one quarter of the round length while the claim

phase is one half.
13Both commit and reveal are simple and cheap transactions. The only expensive

transaction is claim but that only the winner needs to submit.
14If storage depth is less than the anchor’s proximity order relative to the overlay

address.

CHAPTER 3. INCENTIVES 119

Figure 3.18: Phases of a round of the redistribution game. The figure displays

the timeline of the repeating rounds of the redistribution game with its phases.

In the context of smart contract interaction, logically starting with the commit

phase, followed by reveal and claim. From the point of view of client node

engagement starting with the end of the reveal phase with the neighbourhood

selection anchor revealed, those in the selected neighbourhood start calculating

their reserve sample only to submit it by the end of the next commit phase. If

they are selected as an honest node and as a winner, they submit their proof of

entitlement in a claim transaction.

The storer nodes within a neighbourhood are assumed to have consen-

sus over the chunks that make up their reserve and provide evidence,

known as proof of entitlement, to the blockchain (discussed below in

detail in 3.4.4). In such a game, the Nash-optimal strategy for each

node is to follow the protocols and coordinate with others to ensure that

all neighbouring peers arrive at the same proof of entitlement based

on the shared information. Since the proof of entitlement needs to be

consensual but unstealable,15 a commit/reveal scheme must be used.

During the commit phase, nodes within a neighbourhood will apply

by submitting the reserve commitment obfuscated with an arbitrary

15Any explicit communication between independent nodes about this reserve before

the end of the commit phase constitutes risk in that it may leak the proof to a node

not doing storage work. Therefore nodes are incentivised to keep the proof a secret.

Making these proofs unstealable helps detect opportunistic peers that pose as storers

but do not provide adequate storage.

120 CHAPTER 3. INCENTIVES

key (that they later reveal). The smart contract receiving the commit

transaction verifies that the node is staked, i.e., the registry of the staking

contract contains an entry for the node’s overlay with a stake value that

is higher than the minimum required stake.

During the reveal phase, nodes that had previously committed to a

reserve now reveal their commitment by submitting a transaction con-

taining their reserve commitments, storage depth, overlay address, and

the key they used to obfuscate the commit. Upon receiving the reveal

transaction, the contract verifies that the revealed data, when serialised,

does indeed hash to their commitment. It is also checked if the node be-

longs to the neighbourhood designated by the neighbourhood selection

anchor, i.e., is within the storage depth provided in the reveal.

In the claim phase, the winner node is required to submit a claim trans-

action.16 First, in order to determine the outcome of the Schelling

game, one reveal is selected from the reveals submitted during the re-

veal phase.17 The selected reveal represents the truth; the set of applica-

tions that agree with the selected one represent the honest peers of the

neighbourhood, the ones who disagree are considered liars, while those

committers that did not reveal or revealed invalid data are classified as

saboteurs. Honesty is incentivised by the fact that liars and saboteurs

get punished. In what follows we introduce staking that is needed for

both the selection processes and the punitive measure.

3.4.3 Staking

Neighbours with shared storage

In order to provide robust protection against accidental node churn, i.e.,

to ensure the retrievability of chunks from a neighbourhood in the face

of some nodes being offline, the swarm requires a number of indepen-

16Every node in the selected neighbourhood needs to perform the corresponding

calculations to determine whether or not they are the winner.
17This is relevant only if the depth and/or the commitment are non-uniform across

applicants.

CHAPTER 3. INCENTIVES 121

dent storers in each neighbourhood to physically replicate content. If

payout was given to each node that shows proof of entitlement, oper-

ators could exploit the system by creating spurious nodes for the sole

purpose of applying for the reward. Although measures can be imple-

mented to enforce that these spurious nodes must be operating on the

network, operators may still opt to run several nodes yet share their

storage on a single hardware. The incentive system must ensure that

storage providers do not adopt this strategy. To this end, we introduce

staking.

Stakes serve as weights used by the contract to determine the true re-

serve commitment (truth selection) and to identify the winner among

honest nodes (winner selection). The probability of winning is deter-

mined by peers’ relative stakes, making stake an additive factor. Con-

sequently, operators’ profits depend solely on their total stake within

the neighbourhood. Given the costs associated with running a node,

operators will have no motivation to divide their stake among multiple

nodes sharing the same storage hardware.

Committed stake and stake balance

When registering in the staking contract, stakers commit to a stake

denominated in rent units called committed stake. The committed

stake amount must have a lower bound.18 The amount sent with the

transaction is recorded and serves as collateral called stake balance.

Stakes can be created or topped up at any time, but the update time

and amount are recorded. Participation is limited to peers whose stake

has not changed recently, ensuring that stakes cannot be altered after

learning about the selected neighbourhood. When querying the stake

of a node, the contract returns the absolute committed stake in BZZ.

This value is calculated as taking either (1) the committed stake in rent

18A large number of staked nodes could cause the claim transaction to fail due to the

gas cost required for iterating over them. This presents a potential attack where the

adversary registers stakes for numerous nodes and commits for all of them. Such an

attack is made prohibitively costly by imposing a minimum stake requirement.

122 CHAPTER 3. INCENTIVES

units multiplied by the unit price of rent or (2) the entire stake balance,

whichever is smaller.

Stakes must be transferable between overlay addresses to facilitate

neighbourhood hopping in case the distribution of stake per neigh-

bourhood is unbalanced.

Withdrawability of surplus stake balance

The committed stake allows operators to indicate their profit margin

together with their time preference for realising that profit. However,

since the profit is only transparent once the relative stakes within the

neighbourhood are known, it may take a while for nodes to discover

their optimal stake.

If the BZZ token price increases and the unit price of rent drops, the

entry for the node in the stake registry will show an excess balance. This

surplus can be withdrawn at any time, allowing stakers to realise their

profit from BZZ appreciation.19

3.4.4 Neighbourhood consensus over the reserve

Peers applying for the round must reach a consensus on which chunks

belong to their respective reserves. At a minimum, applicants must

agree on their area of responsibility, which can be derived from their

storage depth and their overlay address. The consensus over the reserve

content is verified through the identity of a reserve sample. The sample

consists of the first k chunks in the reserve using an ordering based on a

modified hash of the chunks. The modified chunk hash is obtained using

the chunk contents and a salt specific to the round.20 It is impossible

19In case the token price goes up substantially, the stake balance can become signifi-

cantly more valuable than what nodes could ever expect to earn. If the stake balance

was not at all withdrawable, participation would be disincentivised due to the fear of

losing the potential gains in the event of BZZ token appreciation.
20This modified hash is the BMT hash of the chunk data using Keccak-256 prefixed

with the reserve sample salt as a base hash. The ordering is the ascending integer

order reading the 32-byte modified hash as a big-endian encoded 256-bit integer.

CHAPTER 3. INCENTIVES 123

for any node to construct this set unless they store all (or a substantial

number of the) valid chunks, together with their data, at or after the

time the salt is revealed.

Recency and sampling

The reserve sample must exclude very recent chunks to prevent mali-

cious uploaders from bombarding nodes in the neighbourhood with

a non-identical set of chunks that are going to be sampled, thereby

disrupting the consensus about the reserve. One way to guard against

this attack is to save each chunk together with its time of storage21 in

the local database. Pairwise synchronisation of chunks between neigh-

bouring nodes, using the pull-sync protocol, respects this ordering by

time of storage. We require that live syncing, i.e., the syncing of chunks

received after the peer connection has been started, has a latency no

longer than a predefined constant duration called maximum syncing

latency (or max sync lag for short). Peer connections that exceed this

syncing latency are not considered legitimate storer nodes according

to the protocol. This restriction ensures that malicious nodes cannot

back-date new chunks beyond the maximum sync lag without losing

their storer status.

In order to reach consensus, it is important to ensure that all chunks re-

ceived by any node in the neighbourhood not later than l are distributed

to every node of the neighbourhood before the claim phase. If we set the

value of l to be 2 times the allowed sync lag, then every chunk landing

first with a node has time to arrive at each node to be safely included in

a consensual sample.22

21Using the timestamp within the postage stamp alone, to define the minimum age,

on would not solve the consensus problem, since chunks with old postage stamps

could be circulated towards the end of sampling and lead to disagreements between

neighbours.
22Instead of actually monitoring neighbour connections and abstaining from commit-

ting to a sample in case of excessive lag, one can just choose a small enough sample

size.

124 CHAPTER 3. INCENTIVES

Storage depth and honest neighbourhood size

In order to decide which reveal represents the truth for the current

round, one submission out of all reveals is selected randomly, with a

probability proportional to the amount of stake the revealer has. More

precisely: based on the amount of stake per neighbourhood size, i.e.,

stake density. The reserve sample hash and the reported storage depth

thus revealed are considered the truth for the current round.

Now we can understand why nodes will report actual storage depth

correctly. If a node chooses to play with a larger neighbourhood than

the neighbours, it will be selected more often than the others. However,

as the committed storage depth decreases as compared to peers, the

node’s stake is counted with an exponentially deflated value relative

to the peers reporting a deeper storage radius, making such an attack

costly.

Overreporting storage depth is possible as long as the the node falls

into this narrower proximity of the neighbourhood selection anchor.

Therefore, a systematic exploit requires the malicious actor to control

a staked node in each sub-neighbourhood of the true honest neigh-

bourhood. Additionally, the winners need to provide evidence that the

set of chunks within their storage depth indeed fills their reserve. The

actual integer values of the transformed chunk addresses in the sample

contain information regarding the size of the original sampled set. By

requiring the size of the sampled set to fall within the expected range

(with sufficient certainty), a constraint is imposed on the upper bound

of the values of the sample. This construct is called proof of density.

Note that the sample-based density proof can be spoofed if the attacker

mines content filtering chunks in such a way that the transformed chunk

addresses form a dense enough sample, and then uses its own postage

batches to stamp them. To enhance security against such attacks, ad-

ditional measures can be implemented. One approach is to require a

commitment to the entire set of postage stamps and prove custody of a

sufficient quantity through a randomised sample. By imposing this re-

quirement, fraudulent claimants not only need to generate the content,

CHAPTER 3. INCENTIVES 125

but also must have enough storage slots to fake the sample. This would

require the attacker to purchase postage batches in the magnitude of

the entire network or keep track of and store the actual postage stamps

existing in the network. The former imposes a prohibitive cost on the

attacker, whereas in the latter case, the malicious claimant must bear

the risk of depending on honest neighbours for the post-hoc retrieval of

the witness chunk data needed for the proof of entitlement.

Skipped rounds and rollover

If no claim is made in a particular round, the funds in the pot simply

carry over and increase the outpayment for the next round of the redis-

tribution. This policy is by far the easiest to implement, resulting in the

lowest gas expenditures.23

The eight rules of entitlement

Here we summarise the eight rules of validating a claim, which involve

committing and revealing a reserve commitment, as well as submitting

evidence as proof of entitlement; see also Table 3.1):

REPLICATION

Since liars get frozen, which means they are excluded from the game

for a certain period due to revealing a reserve commitment hash or

storage depth different from the winner, nodes within a neighbour-

hood are incentivised to replicate their reserve by synchronising the

chunks they store using the pull-sync protocol.

REDUNDANCY

The stake serves as weights in determining the probability of a node

within a neighbourhood being selected as winner. As a result, there

is no advantage in submitting multiple claims. Operators running

multiple nodes in one neighbourhood (sharing storage) do not gain

any advantage compared to running a single node with the same

23One might argue for reimbursing honest nodes for their transaction costs. Thereby,

nodes with really small stakes can still participate and in general nodes are less

exposed to variance in the probabilistic outpayments.

126 CHAPTER 3. INCENTIVES

total stake. Assuming that this disincentive to proliferate is effective,

staking can be considered a guarantee for true redundancy.

RESPONSIBILITY

At the time of revealing, it is verified whether the neighbourhood

selection anchor falls within the node’s radius of responsibility, i.e.,

if it belongs to the range of addresses covered by the node, where

the proximity of those addresses to the node’s overlay address is not

less than their reported storage depth.

RELEVANCE

Using a witness proof with the reserve commitment hash as the

root, we provide evidence that an arbitrarily chosen segment in the

reserve sample packed address chunk corresponds to the address

of a witness chunk. A valid postage stamp signed off on this witness

chunk address is presented, indicating that storing this chunk in

the reserve is relevant to someone (and has been paid for).

RETENTION

A segment inclusion proof is provided as evidence that the chunk

data has been preserved with complete integrity.

RECENCY

The salt used for the transformed reserve sample is derived from

the random noncs of the current round, proving that the RS must

have been compiled recently. The witness and segment indexes

are derived from the next game’s random seed, ensuring that no

compressed or partial retention of chunk data would have been

sufficient at the time of compilation and commitment.

RETRIEVABILITY

The chunk’s retrievability is demonstrated through proximity-based

routing, indicating that its address belongs to the range of addresses

covered by the neighbourhood. The chunk’s proximity order to the

node’s overlay address is not less than its reported storage depth.

RESOURCES

Resource retention verifies the volume of resources constituting

the reserve by estimating the sampled set size using the density of

chunks and postage stamps.

CHAPTER 3. INCENTIVES 127

proof of construct used attacks mitigated

REPLICATION Shelling-game over reserve

sample

non-syncing, laggy

syncing

REDUNDANCY share of reward propor-

tional to stake

shared storage, over-

application

RESPONSIBILITY proximity to anchor depth/neighbourhood

misreporting

RELEVANCE scarcity of postage stamps generated data

RETENTION segment inclusion proof non-storage, partial

storage

RECENCY round-specific salt for re-

serve sample

create proof once and

forget data

RETRIEVABILITY proximity of chunk depth over-reporting

RESOURCES density-based reserve size

estimation

targeted chunk genera-

tion (mining)

Table 3.1: r8: proofs used as evidence for entitlement to reward.

3.4.5 Pricing and network dynamics

In this section, we first contextualise the redistribution scheme within

the framework of self-sustainability and offer a simple solution for price

discovery.

For Swarm to be a truly self-sustaining system, the unit price of storage

rent needs to be set in a way that is responsive to supply and demand.

Ideally, the price is automatically adjusted based on reliable signals,

resulting in dynamic self-regulation. The guiding insight here is that the

information provided by storer nodes during the redistribution game

also serves as a price signal. In other words, the redistribution game

serves as a decentralised price oracle.

Splitting and merging of neighbourhoods

The storage depth represents the proximity radius within which the

neighbourhood’s storer nodes keep all chunks with valid postage stamps

and fill their reserve.

128 CHAPTER 3. INCENTIVES

If the volume of newly issued storage slots from recently purchased

batches (ingress rate) and the volume of expired storage slots (outgress

rate) balance out, the storage depth remains constant. However, let’s

consider what happens when the volume of reserved chunks increases.

As the client’s reserve capacity is fixed, over time, nodes are able to

fill their capacity with chunks that are closer to them by at most one

proximity order compared to the previously farthest chunks. This results

in an increase in their storage depth. Specifically, when the volume of

reserved chunks doubles, the storage depth increases by one.

In order to store this excess data under the same redundancy constraints,

the network needs double the number of nodes. If all else is equal, dou-

ble the network-wide reserve, double the postage revenue and therefore

double the overall pot that gets redistributed. When neighbourhoods

split as they are absorbing the new volume, they simultaneously release

the chunks in the PO bin of their old depth, i.e., the chunks now stored

by their sister nodes.

Utilisation rate is an organic way to introduce pressure against fully

maximising a node’s reserve with critical content and allows for early

detection of capacity pressure. This provides a sufficient safety buffer

for the triggered incentives to take effect. For instance, if utilisation

rate is 1/8, the storage depth is up to 3 POs shallower than the reserve

depth.24 Now the ingress can be really high and bring the reserve depth

down to the storage depth. When a narrowing gap between the potential

(reserved) and actual (observed) utilisation of the DISC is detected, any

changes in incentives will have the buffer to take effect without the

target redundancy being threatened.

Number of honest nodes as price signal

Since the storage capacity is maxed out, the ratio of supply and demand

is directly seen in the number of honest nodes playing the Schelling

game.

24The narrative of this scenario is that uploaders with underutilised batches subsidise

extra redundancy for everyone.

CHAPTER 3. INCENTIVES 129

We make the assumption that nodes staying in the network for a longer

period indicate their profitability. For a stable swarm, neighbourhoods

only need a minimum of 4 (balanced) nodes. Assuming equal stake (or

more precisely, assuming that relative stake equalises the profitability of

node operators) if there are n nodes in a neighbourhood, their long-term

profit is equally shared, this amount is optimised if there are exactly four

nodes (n = 4). However, there can be more nodes in a neighbourhood,

as opportunistic operators may anticipate a neighbourhood split due to

capacity demand and start their nodes accordingly. As these nodes stay

in, the same long-term winnings of the neighbourhood get distributed

among more nodes than optimal. However, the fact that nodes tolerate

this implies that the reward is too much (the price is too high), and the

network can tolerate a decreasing price.

On the other hand, if the number of honest revealers is lower than the

neighbourhood redundancy requirement, it signals a capacity shortage

and therefore requires an increase in storage rent.

Parameterisation of the price oracle

The rule for updating the price from one round to the next is that the

current price is multiplied by a value m which depends on the number

of honest revealers in the round. Mathematically, pt+1 = mpt , where pt

is the price in round t (and pt+1 is then the price in the following round).

We define the multiplier m in terms of the number of honest revealers r

and a stability parameter σ that governs how quickly the price should

increase or decrease, all other things equal.

In particular, we choose m = 2σ(4−r), and therefore we have pt+1 =
2σ(4−r)pt . This expresses how the deviation 4− r of the number of re-

vealers from the optimal value of 4 maps to an exponential change in

price. The stability parameter σ determines the generic smoothness of

price changes across rounds, indicating how many rounds it takes for

the rent price to double in case of a consistent signal of the lowest degree

of undersupply (or halve in case of a consistent oversupply). Figure 3.19

illustrates how the price model works.

130 CHAPTER 3. INCENTIVES

Figure 3.19: Adaptive pricing. The relative change in price (y-axis), mathemati-

cally expressed as the price in the next round divided by the price this round

minus one (pt+1/pt −1), is displayed against the number of honest revealers r

in the current round (x-axis). This is done so for three different values of the

stability parameter σ (colours). The points are the actual price change values;

the connecting dashed lines are for visual aid only. The dotted horizontal line

marks the point where no price change occurs. Price change is exactly zero for

any σ when the number of honest revealers is four. Otherwise, larger values

of σ lead to larger relative price changes as the number of honest revealers is

varied.

Two minor adjustments are applied to this simple model. First, r is

capped at a maximum value rmax (chosen to be 8 in our case). That

is, r should actually be interpreted as the minimum of the number of

honest revealers and rmax. Second, the price is never allowed to drop

below a predetermined minimum pmin. That is, if the price were to drop

from one round to the next and reach a value below the predetermined

minimum pmin, the price will be held steady at pmin instead.

3.5 Insurance: negative incentives

The storage incentives presented so far refer to the ability of a system to

encourage the preservation of content through monetary rewards given

to storers. This was achieved using an on-chain game which instru-

CHAPTER 3. INCENTIVES 131

mented the fair redistribution of postage payments to storers, thereby

providing positive incentivisation at a collective level. Such a system,

however, is suspect to the tragedy of the commons problem in that dis-

appearing content (any particular chunk missing) will have no negative

consequence to storers (any one storer node punished). The lack of

individual accountability renders the storage incentivisation limited as

a security measure against data loss. Introducing competitive insur-

ance, on the other hand, adds an additional layer of negative incentives,

compelling storers to be very precise in their commitments to ensure

reliability for users. Particular attention is required in the design of the

incentive system to make sure that failure to store every last bit promised

is not only unprofitable but outright catastrophic to the insurer.

3.5.1 Punitive measures

Unlike in the case of bandwidth incentives where retrievals are immedi-

ately accounted and settled, long-term storage guarantees are promis-

sory in nature and it can only be decided if the promise has been kept

at the end of its validity. Merely losing reputation is not sufficient as a

deterrent against foul play in these instances: since new nodes must be

allowed to provide services right away, cheaters could just resort to new

identities and keep selling (empty) storage promises.

We need the threat of punitive measures to ensure compliance with

storage promises. These can be achieved through a deposit system.

Nodes wanting to sell promissory storage receipts should have a stake

verified and locked-in at the time of making their promise. This implies

that nodes need to register in advance, agreeing to a contract and placing

a security deposit. Once registered, a node may sell storage promises

covering the time period for which their funds are locked. While their

registration is active, if they are found to have lost a chunk that was

covered by their promise, they stand to lose their deposit.

Let us start from some reasonable guiding principles:

— Owners need to express their risk preference when submitting to

storage.

132 CHAPTER 3. INCENTIVES

— Storers need to express their risk preference when committing to

storage.

— There needs to be a reasonable market mechanism to match de-

mand and supply.

— There needs to be guarantees for the owner that its content is

securely stored.

— There needs to be a litigation system where storers can be charged

for not keeping their promise.

Owners’ risk preferences consist of the time period covered as well as

a preference for the degrees of reliability. These preferences should be

specified on a per-chunk basis and they should be completely flexible

at the protocol level.

Satisfying storers’ risk preferences means that they have ways to express

their certainty of preserving what they store and factor that in their pric-

ing. Some nodes may not wish to provide long-term storage guarantees,

while others may be unable to commit large deposits. This differentiates

nodes in their competition for service provision.

A market mechanism means there is flexible price negotiation or dis-

covery or automatic feedback loops that tend to respond to changes in

supply and demand.

In what follows we will elaborate on a class of incentive schemes we call

"swap, swear, and swindle" due to the basic components:

swap

Nodes maintain a quasi-permanent, long-term contact with their

registered peers. Along these connections, peers exchange chunks

and receipts, triggering swap accounting (see 3.2.1).
swear

Nodes registered on the Swarm network are held accountable and

stand to lose their deposit if they are found to violate the rules of

the swarm in an on-chain litigation process.

swindle
Nodes monitor other nodes to check if they comply with their

CHAPTER 3. INCENTIVES 133

promise by submitting challenges according to a process of liti-

gation.

3.5.2 Contracts through receipts

A litigation procedure necessitates that there are contractual agreements

between parties, ultimately linking an owner, who pays for securing fu-

ture availability of content, and a storer, who gets rewarded for preserv-

ing it and making it immediately accessible at any point in the future.

The incentive structure needs to make sure that litigation is used only

as a last resort.

The most straightforward approach to manage storage deals is through

direct contracts between the owner and the storer. This can be imple-

mented by having storers return signed receipts of chunks they accept

to store. Owners then pay for the receipts either directly or via escrow. In

the latter case, the storer is only awarded the locked funds if they are able

to provide proof of storage. This procedure is analogous to the postage

stamp lottery process. Insurance can be bought in the form of specially

marked postage stamps. Statements of custody receipts can close the

loop and represent a contract between the uploader and the storer. Out-

payments conditional on proofs of custody can be implemented the

same way as the lottery.

Even if the consumer attempting to access the chunk was not a party

to the agreement to store and provide the requested content, failure to

deliver the stored content is subject to penalties. Litigation is therefore

expected to be available to third parties who wish to retrieve content.

If the pairing of chunks and receipts is public and accessible, then con-

sumers/downloaders (not only creators/uploaders) of the content are

able to litigate in case a chunk is found to be missing.

Registration

Before a node can sell promises of long-term storage, it must first register

via a contract on the blockchain we call the SWEAR (Secure Ways of

Ensuring ARchival or Swarm Enforcement And Registration) contract.

134 CHAPTER 3. INCENTIVES

The SWEAR contract allows nodes to register their public key to become

accountable participants in the swarm. Registration involves sending

the deposit to the SWEAR contract, which serves as collateral in case

the terms that registered nodes "swear" to keep are violated (i.e. nodes

do not keep their promise to store). The registration is valid only for a

set period, at the end of which a Swarm node is eligible to reclaim their

deposit. Users of Swarm should be able to count on the loss of deposit as

a disincentive against foul play for as long as enrolled status is granted.

Because of this the deposit must not be refunded before the registration

expires. The expiry of the insurance period should therefore include a

final phase during which the node is not allowed to issue new receipts

but can still be challenged.

When a registered insurer node receives a request to store a chunk that

is closest to them, it can acknowledge the request with a signed receipt.

It is these signed receipts that are used to enforce penalties for loss of

content. Because of the locked collateral backing them, the receipts

can be viewed as secured promises for storing and serving a particular

chunk.

3.5.3 Submitting a challenge

If a node fails to observe the rules of the Swarm they swear to keep,

enforcement of punitive measures must be preceded by a litigation

procedure. The implementation of this process is called SWINDLE

(Secured With INsurance Deposit Litigation and Escrow).

When a user attempts to retrieve insured content and fails to find a

chunk, they can report the loss by submitting a challenge. This scenario

is the typical context for starting litigation. This is analogous to a court

case in which the issuers of the receipts are the defendants who are

guilty until proven innocent. Similarly to a court procedure, public

litigation on the blockchain should be a last resort when the rules have

been abused despite the deterrents and positive incentives.

The challenge takes the form of a transaction sent to the SWINDLE

contract, in which the challenger presents the receipt(s) for the lost

CHAPTER 3. INCENTIVES 135

chunk. Any node is allowed to send a challenge for a chunk as long as

they have a valid receipt for it (although it may not have necessarily been

issued to them). The same transaction also sends a deposit covering the

price of the upload of a chunk. The validity of the challenge as well as

its refutation need to be easily verifiable by the contract. The contract

verifies if the receipt is valid, i.e. 1) authentic, 2) active and 3) funded, by

checking the following conditions:

authentic
The receipt was signed with the public key of a registered node.

active
The expiry date of the receipt has not passed.

funded

Sufficient funds are sent alongside it to compensate the peer for

uploading the chunk in case of a refuted challenge.

The last point above is designed to disincentivise frivolous litigation,

i.e. bombarding the blockchain with bogus challenges and potentially

causing a DoS attack.

The contract comes with an accessor for checking that a given node is

challenged (potentially liable for penalty), so the challenged nodes can

be notified that they must present the chunk in a timely fashion. The

challenge remains open for a fixed amount of time, the end of which

essentially sets the deadline for refuting the challenge.

Upon verifying the format of the refutation, the contract checks its

validity by checking the hash of the chunk payload against the hash that

is litigated or validating the proof of custody.

If a challenge is refuted within the period the challenge is open, the

deposit of the accused node remains untouched. The cost of uploading

the chunk must be reimbursed to the uploader from the challenger’s

deposit. To prevent DoS attacks, this deposit should actually be sub-

stantially higher than the upload cost in any case (e.g. a small integer

multiple of the corresponding gas price). After successful refutation the

challenge is cleared from the blockchain state.

136 CHAPTER 3. INCENTIVES

This challenge scheme serves as the simplest method (1) for defendants

to refute a challenge and (2) make the disputed data available to nodes

that require it.

3.5.4 Successful challenge and enforcement

If the deadline passes without successful refutation of the challenge,

then the charge is regarded as proven and the case enters into the en-

forcement stage. Nodes that are proven guilty of losing a chunk lose

their deposit. Enforcement is guaranteed to be successful by the fact

that deposits are kept locked up in the SWEAR contract.

If, on litigation, it turns out that a chunk (that was covered by a receipt)

was lost, the deposit must be at least partly burned. Note that this is nec-

essary because, if penalties were paid out as compensation to holders

of receipts of lost chunks, it would provide an avenue of early exit for a

registered node by "losing" bogus chunks that had been deposited by

colluding users. Since users of Swarm are interested in their information

being reliably stored, their primary incentive for keeping the receipts is

to keep the swarm motivated to do so, not the potential for compensa-

tion in the case they do not. If deposits are substantial, we can get away

with paying out compensation for initiating litigation, however we must

have the majority (say 95%) of the deposit burned in order to make sure

this easy exit route remains closed.

Punishment can entail suspension, meaning a node found guilty is no

longer considered a registered Swarm node. Such a node is only able to

resume selling storage receipts once they create a new identity and put

up a deposit once again.25

25Note that the stored chunks are in the proximity of the address, so having to create a

new identity will also imply expending extra bandwidth to replenish storage. This is

an extra pain inflicted on offending nodes.

CHAPTER 3. INCENTIVES 137

Incentivising promissory services

Delayed payments without locked funds leave storers vulnerable to

non-payment. Advance payments (i.e. payments settled at the time of

contracting, not after the storage period ends) on the other hand, leave

the buyers vulnerable to cheating. Without limiting the total value of

receipts a node can sell, a malicious node can collect more than their de-

posit and disappear. Having forfeited their deposit, they still walk away

with a profit even though they broke their promise. Given a network size

and a relatively steady demand for insured storage, the deposit could be

set sufficiently high so this attack is no longer economical.

Locking the entire amount eliminates the storer’s distrust due to po-

tential insolvency of the insured party. When paying for insurance,

the funds should cover the total price of storing a chunk for the entire

storage period. This amount is locked and is released in installments

contingent on the condition that the node provides a proof of custody.

On the other hand, since payment is delayed it is no longer possible to

collect funds before the work is complete, which eliminates a collect-

and-run attack entirely.

3.6 Summary

In the first two chapters of the architecture part of the book, we intro-

duced the core of Swarm: the peer-to peer-network layer described

in Chapter 2 implements a distributed immutable storage for chunks,

which is complemented by the incentive system described in the subse-

quent chapter. The resulting base layer system provides:

— permissionless participation and access,

— zero-cash entry for node operators,

— maximum resource utilisation,

— load-balanced distribution of data,

— scalability,

— censorship-resistance and privacy for storage and retrieval,

— auto-scaling popular content,

— basic plausible deniability and confidentiality,

138 CHAPTER 3. INCENTIVES

— churn-resistance and eventual consistency in a dynamic network

with node dropouts,

— sustainability without intervention due to built-in economic in-

centives,

— robust private peer-to-peer accounting,

— incentivised bandwidth sharing,

— off-chain micro-commitments with on-chain settlement,

— DoS resistance and spam protection,

— positive (i.e., motivated by reward) incentives for storage,

— negative (i.e., discouraged through threat of punitive measures)

incentives against data loss.

4. BUILDING ON THE DISC

This chapter builds on the distributed chunk store and introduces data

structures and processes that enable higher-level functionality, offering

a rich experience handling data. In particular, we show how chunks can

be organised to represent files (4.1.1) and how files can be organised to

represent collections (4.1.2). We also introduce key–value maps (4.1.4)

and briefly discuss the potential of arbitrary functional data structures.

We then shift our attention to presenting our solution for providing

confidentiality and access control (4.2).

In 4.3, we introduce Swarm feeds, which are designed to represent a

wide variety of sequential data, such as versioning updates of mutable

resources or indexing messages for real-time data exchange: offering a

system of persisted pull messaging. To implement push notifications

of all kinds, 4.4 introduces the novel concept of Trojan chunks that

allow messages to be disguised as chunks and directed to their intended

recipient in the swarm. We explain how Trojan chunks and feeds can be

combined to form a fully-fledged communication system with robust

privacy features.

4.1 Data structures

In the first two chapters, we made the assumption that data is struc-

tured in the form of chunks, i.e. fixed-size data blobs. However, in this

section, we will present the algorithms and structures that enable the

representation of data of arbitrary length. We will introduce Swarm man-

ifests, which form the basis of representing collections, indexes, and

139

140 CHAPTER 4. BUILDING ON THE DISC

routing tables, allowing Swarm to host websites and offer URL-based

addressing.

4.1.1 Files and the Swarm hash

In this section, we introduce the concept of the Swarm hash, which

provides a mechanism for combining chunks to represent larger sets

of structured data, such as files. The idea behind the Swarm hashing

algorithm is that chunks can be arranged in a Merkle tree. In this struc-

ture, leaf nodes correspond to chunks from consecutive segments of

input data, while intermediate nodes correspond to chunks that are

composed of the chunk references of their children. These combined

chunks are packaged together to form another chunk, as illustrated in

Figure 4.1.

H Swarm root hash

H0

intermediate

branching nodes

chunks of 128 hashes

H0

H0

H0

C0

H1

C1

H127

H1 H127

H1 H127

H1 H127

intermediate

branching nodes

chunks of 128 hashes

H0 H1 H127

H0 H1 H127

H0 H1 H127

Cm
leaf chunks

data level

level 0

level 1

level n −1

root = level n. . .

...

...

.

.

.

.

Figure 4.1: Swarm hash: data input is segmented to 4-kilobyte chunks (gray),

that are BMT hashed. Their hashes are packaged into intermediate chunks

starting on level 0, all the way until a single chunk remains on level n.

Branching factor and reference size

The branching factor of the tree is calculated as the chunk size divided

by the reference size. For unencrypted content, the chunk reference is

simply the BMT hash of the chunk, which is 32 bytes, so the branching

factor is just 4096/32 = 128. A group of chunks referenced under an

intermediate node is referred to as a batch. If the content is encrypted,

the chunk reference consists of the concatenation of the chunk hash

CHAPTER 4. BUILDING ON THE DISC 141

and the decryption key. Both are 32 bytes long, so an encrypted chunk

reference will be 64 bytes, and therefore the branching factor is 64.

Figure 4.2: Intermediate chunk. It encapsulates references to its children.

As a result, a single chunk can represent an intermediate node in the

Swarm hash tree, in which case its content can be segmented to refer-

ences, allowing retrieval of their children. These child nodes themselves

may be intermediate chunks, as illustrated in Figure 4.2. By recursively

unpacking these from the root chunk downwards, we can eventually

obtain a sequence of data chunks.

Chunk span and integrity of depth

The length of data subsumed under an intermediate chunk is called the

chunk span. In order to be able to tell if a chunk is a data chunk or not,

the chunk span is prepended to the chunk data in a 64-bit little-endian

binary representation. When calculating the BMT hash of a chunk, this

span constitutes the metadata that needs to be added to the BMT root

and hashed together, resulting in the chunk address. When assembling

a file starting from a hash, it is possible to tell if a chunk is a data chunk

or an intermediate chunk simply by looking at the span. If the span

is larger than 4K, the chunk is an intermediate chunk and its content

needs to be interpreted as a series of hashes of its children; otherwise it

is a data chunk.

142 CHAPTER 4. BUILDING ON THE DISC

In theory, if the length of the file is already known, spans of interme-

diate chunks are unnecessary since we could calculate the number of

intermediate levels required for the tree. However, using spans disallows

reinstating the intermediate levels as data layers. In this way, we impose

integrity of the depth.

Appending and resuming aborted uploads

The Swarm hash has the interesting property that any data span corre-

sponding to an intermediate chunk is also a file and can therefore be

referenced as if the intermediate chunk was its root hash. This property

is significant because it enables appending to a file while retaining a his-

torical reference to the earlier state, without duplicating chunks, except

for the incomplete right edge of the Merkle tree. Appending data to a

file is particularly useful for scenarios such as resuming uploads after a

crash partway through uploading big files.

Random access

Note that all chunks in a file, except for the right edge, are completely

filled. Given that chunks have a fixed size, it is possible to calculate the

path to a specific chunk and the offset to search within that chunk for

any arbitrary data offset ahead of time. Because of this, random access

to files is supported right away (see Figure 4.3).

Compact inclusion proofs for files

Suppose we were to prove the inclusion of a substring in a file at a par-

ticular offset. We have observed that the offset, when applied to the

data, follows a deterministic path traversing the Swarm hash. Since a

substring inclusion proof simply reduces to a series of proofs of data

segment paths, the chunk addresses are a result of a BMT hash, where

the base segments are 32 bytes long. This means that in intermediate

chunks, BMT base segments align with the addresses of their children.

As a consequence, proving that a child of an intermediate chunk at a par-

ticular span offset is equivalent to giving a segment inclusion proof on

the child hash. Therefore, substring inclusion in files can be proved with

CHAPTER 4. BUILDING ON THE DISC 143

Figure 4.3: Random access at arbitrary offset with Swarm hash. The arbitrary

offset informs us how to traverse the Swarm hash tree.

Figure 4.4: Compact inclusion proofs for files. If we need to prove inclusion of

segment i , after division by 32 (within-segment position), we follow groups of 7

bits to find the respective segment of the intermediate node.

144 CHAPTER 4. BUILDING ON THE DISC

a sequence of BMT inclusion proofs where the length of the sequence

corresponds to the depth of the Swarm hash tree (see Figure 4.4).

Note that such inclusion proofs are possible even in the case of en-

crypted data. This is because the decryption key for a segment posi-

tion can be selectively disclosed without revealing any information that

could compromise the encryption of other parts in the chunk.

In this section, we have presented the Swarm hash, a data structure over

chunks that represents files, which supports the following functionali-

ties:

random access
The file can be read from any arbitrary offset with no extra cost.

append

Supports appending without duplication.
length-preserving edits

Supports length-preserving edits without the duplication of unmod-

ified parts.
compact inclusion proofs

Allow inclusion proofs with resolution of 32 bytes in space logarith-

mic in file size.

4.1.2 Collections and manifests

The Swarm manifest serves as a framework that defines a mapping

between arbitrary paths and files to represent collections. It includes

metadata associated with the collection and its objects (files). A manifest

entry contains a reference to a file or, more precisely, a reference to

the Swarm root chunk of the representation of file (see 4.1.1) and also

specifies the media mime type of the file to ensure that browsers can

appropriately handle it. A manifest can be thought of as (1) a routing

table, (2) a directory tree, or (3) an index, which makes it possible for

Swarm to implement (1) web sites, (2) file-system directories, or (3) key–

value stores (see 4.1.4), respectively. The use of manifests is essential for

URL-based addressing within Swarm (see 4.1.3).

CHAPTER 4. BUILDING ON THE DISC 145

Manifests are represented as a compacted trie1 in which individual trie

nodes are serialised as chunks. The paths are associated with a manifest

entry that specifies at least the reference. The reference may point to an

embedded manifest if the path is a common prefix of more than one

path in the collection, thereby implementing branching in the trie, as

depicted in Figure 4.5.

Figure 4.5: Manifest structure. Nodes represent a generic trie node: it contains

the forks which describe continuations sharing a prefix. Forks are indexed by

the next byte of the key, whose value contains the Swarm reference to the child

node as well as the longest prefix (compaction).

A manifest entry is essentially a reference that provides information

about a file or directory. The metadata pertains to the following areas of

concern:

— Parameters for the downloader component, responsible for as-

sembling chunks into a byte stream. This includes access con-

trol information, erasure coding parameters, and the publisher

needed for chunk recovery.

1See https://en.wikipedia.org/wiki/Trie

https://en.wikipedia.org/wiki/Trie

146 CHAPTER 4. BUILDING ON THE DISC

reference

manifest
entry

file info

http headers

access control params

error correction params

Figure 4.6: Manifest entry is a data structure that contains the reference to a file

including metadata about a file or directory pertaining to the assembler, access

control, and HTTP headers.

— Information relevant to client-side rendering, handled by the

browser. This may include content type headers, or generically

HTTP headers, that are picked up by the local swarm client’s API

and set in the response header when the file is retrieved.

— File information mapped to the file system during downloading,

such as file permissions.

The high-level API for manifests offers functionality for uploading and

downloading files and directories. It also provides an interface for

adding documents to a collection on a path and deleting a document

from a collection. Note that deletion here only means that a new mani-

fest is created in which the path in question is omitted. There is no other

notion of deletion in Swarm, i.e. the referenced value in the deleted

manifest entry still remains in Swarm. Swarm exposes the manifest API

via the bzz URL scheme.

4.1.3 URL-based addressing and name resolution

Earlier, we introduced the low-level network component of Swarm as a

distributed immutable store of chunks (DISC, see 2.2.1). In the previous

two sections, we discussed how files (4.1.1) and collections (4.1.2) can be

CHAPTER 4. BUILDING ON THE DISC 147

represented in Swarm and identified using chunk references. Manifests

provide a way to index individual documents in a collection, enabling

them to serve as representations of websites hosted in Swarm. The root

manifests serve as the entry-points to virtually hosted sites on Swarm

and are therefore analogous to hosting servers. In the current web,

domain names resolve to the IP addresses of host servers, and URL

paths (of static sites) are mapped to entries in the directory tree based

on their path relative to the document root set for the host. Analogously,

in Swarm, domain names resolve to references to the root manifests,

and URL paths are mapped to manifest entries based on their path.

When the HTTP API serves a URL, the following steps are performed:

domain name resolution
Swarm resolves the host part to a reference to a root manifest,

manifest traversal

recursively traverse embedded manifests along the path matching

the URL path to arrive at a manifest entry,
serving the file

the file referenced in the manifest entry is retrieved and rendered in

the browser with headers (notably content type) obtained from the

metadata of manifest entry.

Swarm supports domain name resolution using the Ethereum Name

Service (ENS). ENS is the system that, analogously to the DNS of the old

web, translates human-readable names into system-specific identifiers,

i.e., references in the case of Swarm. In order to use ENS, a Swarm node

needs to be connected to an EVM-based blockchain that supports the

Ethereum API (ETH mainnet, Ropsten, ETC, etc). Users of ENS can regis-

ter a domain name on the blockchain and set it to resolve to a reference,

most commonly the content hash of a public (unencrypted) manifest

root. In the case that this manifest represents a directory containing the

assets of a website, the default path for the hash may be set to be the

desired root HTML page. When an ENS name is navigated to using a

Swarm-enabled browser or gateway, Swarm will simply render the root

HTML page and serve the rest of the assets provided in the relative path.

Swarm facilitates easy website hosting, while also providing an interface

148 CHAPTER 4. BUILDING ON THE DISC

to older pre-existing browsers and offering a decentralised improvement

over the traditional DNS system.

4.1.4 Maps and key–value stores

This section describes two methods for implementing a simple dis-

tributed key–value store in Swarm. Both rely solely on tools and APIs

which have been already introduced.

The first technique involves using manifests: Paths represent keys and

the reference in the manifest entry with the particular path point to the

value. This approach benefits from a full API enabling insert, update and

remove through the bzz manifest API. Since manifests are structured

as a compacted trie, this key–value store is scalable. Index metadata

requires storage logarithmic to the number of key–value pairs. Lookup

requires logarithmic bandwidth. The data structure allows for iteration

that respects key order.

Single owner chunks also provide a way to define a key–value store.

The second technique simply posits that the index of the single owner

chunk be constructed as a concatenation of the hash of the database

name and the key. This structure only provides insert, without update

or remove. Both insert and lookup are constant space and bandwidth.

However, lookup is not safe against false negatives, i.e., if the chunk that

represents the key–value pair is not found, this does not mean it has

never been created (e.g. it may have been garbage collected). Thus, the

single owner chunk based key–value store is best used as (1) a bounded

cache of recomputable values, (2) mapping between representations

such as a translation between a Swarm hash and a Keccak256 hash as

used in the Ethereum blockchain state trie nodes, or (3) conventional

relational links, such as likes, upvotes, and comments on social media

posts.

CHAPTER 4. BUILDING ON THE DISC 149

4.2 Access control

This section first addresses the confidentiality of content using encryp-

tion. Encryption becomes especially useful once users are granted the

ability to manage others’ access to restricted content. This encompasses

scenarios such as managing private shared content and granting au-

thorisation for members to access specific areas of a web application.

In this way, we provide a robust and simple API to manage access con-

trol, something that is traditionally handled through centralised gate-

keeping which is subject to frequent and disastrous security breaches.

4.2.1 Encryption

This section focuses on achieving confidentiality in a distributed public

data storage. We explore how to fulfill the natural requirement for many

use cases to store private information while ensuring that it remains

accessible only to specific authorised parties using Swarm.

It is clear that the pseudo-confidentiality provided by the server-based

access control predominantly used in current web applications is inad-

equate. In Swarm, nodes are expected to share the chunks with each

other, in fact, storers of chunks are incentivised to serve them to anyone

who requests them. This decentralised architecture makes it infeasible

for nodes to act as the gatekeepers trusted with controlling access to the

data. Moreover, since any node in the network could potentially be a

storer, the confidentiality solution must not reveal any information that

could distinguish a private chunk from random data. As a consequence

of this, the only way to prevent unauthorized parties from accessing

private chunks is through encryption. In Swarm, if a requestor is au-

thorized to access a chunk, they must possess a decryption key that

allows them to decrypt the chunk. Unauthorized parties, on the other

hand, must not have access to the decryption key. Incidentally, this

mechanism also serves as the basis for plausible deniability.

Encryption at the chunk level is described in 2.2.4. It has the desirable

property of being virtually independent of the chunk store layer, us-

ing the exact same underlying infrastructure for storing and retrieving

150 CHAPTER 4. BUILDING ON THE DISC

chunks as unencrypted content. The only difference between access-

ing private and public data is the presence of a decryption/encryption

key in the chunk references and the associated minor cryptographic

computational overhead.

The storage API’s raw GET endpoint allows both encrypted and unen-

crypted chunk references. Decryption is triggered if the chunk reference

is double size; consisting of the address of the encrypted chunk and a de-

cryption key. Using the address, the encrypted chunk is retrieved, stored,

and decrypted using the supplied decryption key. The API responds

with the resulting plaintext.

The storage API’s POST endpoint expects users to indicate if they want

to have encryption on the upload or not. In both cases, the chunk will

be stored and push-synced to the network, but if encryption is desired,

the encrypted chunk needs to be created first. If no further context is

given, a random encryption key is generated which is used as a seed to

generate random padding to fill the chunk up to a complete 4096 bytes

if needed, and finally this plaintext is encrypted with the key. In the case

of encryption, the API POST call returns the Swarm reference, which

consists of the Swarm hash as the chunk address and the encryption

key.

In order to guarantee the uniqueness of encryption keys as well as to

ease the load on the OS’s entropy pool, it is recommended (but not

required) to generate the key as the MAC of the plaintext using a (semi-)

permanent random key stored in memory. This key can be permanent

and generated using scrypt (Percival 2009) with a password provided

upon startup. Instead of the plaintext, a namespace and path of the

manifest entry can be used as context. Using a key derivation function

in this way has the consequence that chunk encryption will be deter-

ministic as long as the context is the same: If we exchange one byte of

a file and encrypt it with the same context, all data chunks of the file

except the one that was modified will end up being encrypted exactly as

the original. Encryption is therefore deduplication-friendly.

CHAPTER 4. BUILDING ON THE DISC 151

4.2.2 Managing access

This section describes the process the client needs to follow in order to

obtain the full reference to the encrypted content. This protocol relies on

basic meta-information, which is simply encoded as plaintext metadata

and explicitly included in the root manifest entry for a document. This

level of access, known as root access, does not require special privileges.

In contrast, granted access is a type of selective access that necessitates

both root access and access credentials, i.e. an authorised private key

or passphrase. Granted access allows different levels of privileges for

accessing the content by multiple parties sharing the same root access.

This approach allows for updating the content without changing access

credentials. Granted access is implemented using an additional layer of

encryption on references.

The symmetric encryption of the reference is called the encrypted ref-

erence, and the symmetric key used in this layer is called the access

key.

In the case of granted access, the root access meta-information contains

both the encrypted reference and the additional information required

for obtaining the access key using the access credentials. Once the

access key is acquired, the reference to the content is obtained by de-

crypting the encrypted reference with the access key. The resulting full

reference consists of the address root chunk and the decryption key for

the root chunk. The requested data can then be retrieved and decrypted

using the standard method.

The access key can be obtained from a variety of sources, three of which

we will define.

First, a session key is derived from the provided credentials. In the case

of granting access to a single party, the session key is used directly as the

access key, as depicted in Figure 4.7. However, in the case of multiple

parties, an additional mechanism is used to transform the session key

into the access key.

152 CHAPTER 4. BUILDING ON THE DISC

Figure 4.7: Access key as session key for single party access.

Passphrase

The simplest credential for deriving a session key is a passphrase. The

session key is obtained from a passphrase using scryptwith parameters

that are specified within the root access meta-information. The output

of scrypt is a 32-byte key that may be directly used for Swarm encryption

and decryption algorithms.

In typical use cases, the passphrase is distributed by an off-band means

with adequate security measures, or exchanged in person. Any user

knowing the passphrase from which the key was derived will be able to

access the content.

Asymmetric derivation

A more sophisticated credential is a private key, identical to those used

throughout Ethereum for accessing accounts, i.e. an elliptic curve us-

ing secp256k1. In order to obtain the session key, an elliptic curve

Diffie-Hellman (ECDH) key agreement must be performed between the

content publisher and the grantee. The resulting shared secret is hashed

together with a salt. The content publisher’s public key as well as the salt

are included among metadata in the root access manifest. Based on the

standard assumptions of ECDH, this session key can only be computed

by the publisher and the grantee and no-one else. Once again, when

access is granted to a single public key, the session key derived this way

can be directly used as the access key for the decryption of the encrypted

CHAPTER 4. BUILDING ON THE DISC 153

reference. Figure 4.8 summarises the use of credentials to derive the

session key.

Figure 4.8: Credentials to derive session key.

4.2.3 Selective access to multiple parties

In order to manage access by multiple parties to the same content, an

additional layer is introduced to obtain the access key from the session

key. In this variant, grantees can be authenticated using either type of

credentials, however, the session key derived as described above is not

directly used as the access key for decrypting the reference. Instead, two

keys are derived from the session key: a lookup key and an access key

decryption key. These keys are obtained by hashing the session key with

two different constants (0 and 1, respectively).

When granting access, the publisher needs to generate a global access

key to encrypt the full reference, and then encrypts it with the access key

decryption keys for each grantee. Thereafter, a lookup table is created,

mapping each grantee’s lookup key to their encrypted access key. Then,

for each lookup key, the access key is encrypted with the corresponding

access key decryption key.

This lookup table is implemented as an access control trie (ACT) in

Swarm manifest format. The paths in the ACT correspond to the lookup

keys and manifest entries containing the ciphertext of the encrypted

access keys as metadata attribute values. The ACT manifest is an inde-

pendent resource referenced by a URL, which is included among the

root access metadata to indicate whether or not an ACT is to be used.

154 CHAPTER 4. BUILDING ON THE DISC

When accessing content, the user follows these steps: they retrieve the

root access meta data, identify the ACT resource, and then calculate

their session key using either their passphrase and the scrypt parameters

or the publisher public key, their private key, and a salt. From the session

key, they can derive the lookup key by hashing it with 0, and then retrieve

the manifest entry from the ACT. For this, they will need to know the

root of the ACT manifest and then use the lookup key as the URL path. If

the entry exists, the user obtains the value of the access key attribute in

the form of a ciphertext that is decrypted with a key derived by hashing

the session key with the constant 1. The resulting access key can then

be used to decrypt the encrypted reference included in the root access

manifest, as seen in Figure 4.9. Once the manifest root is unlocked, all

references contain the decryption key.

Figure 4.9: Access control for multiple grantees involves an additional layer to

get from the session key to the access key. Each user must lookup the global

access key specifically encrypted to them. Both the key to look up and the key

for decrypting the access key are derived from the session key, which, in turn,

requires their credentials.

This access control scheme offers several desirable properties:

— Checking and looking up one’s own access is logarithmic in the

size of the ACT.

— The size of the ACT merely provides an upper bound on the num-

ber of grantees, without disclosing any information beyond this

upper bound about the set of grantees to third parties. Even those

included in the ACT can only learn that they are grantees, but ob-

CHAPTER 4. BUILDING ON THE DISC 155

tain no information about other grantees beyond an upper bound

on their number.

— Granting access to an additional key requires extending the ACT

by a single entry, which is logarithmic in the size of the ACT.

— Revoking access requires changing the access key and therefore

the rebuilding of the ACT. Note that this also requires that the

publisher retain a record of the public keys of grantees after the

initial creation of the ACT.

4.2.4 Access hierarchy

In the simplest case, the access key is a symmetric key. However, this

is just a special case of the more flexible solution, where the access

key consists of a symmetric key and a key derivation path by which

it is derived from a root key. In this case, a derivation path may also

be included in addition to the encrypted reference. Any party with an

access key whose derivation is a prefix to the derivation path of the

reference can decrypt the reference by deriving its key using their own

key and the rest of the reference’s derivation path.

This allows for a tree-like hierarchy of roles, possibly reflecting an organ-

isational structure. As long as role changes are "promotions", i.e. they

result in increased privileges, modifying a single ACT entry for each role

change is sufficient.

4.3 Feeds: mutability in an immutable store

Feeds are a unique feature of Swarm that constitute the primary use

case for single owner chunks. They have a wide range of applications, in-

cluding versioning revisions of a mutable resource, indexing sequential

updates to a topic, publishing parts to streams, or posting consecu-

tive messages in communication channels. Feeds implement persisted

pull-messaging and can also be interpreted as a pub-sub system.

In Section 4.3.1, we introduce how feeds are composed of single owner

chunks with an indexing scheme, the choice of which we discuss in 4.3.2.

We then delve into the importance of feed integrity and methods for

156 CHAPTER 4. BUILDING ON THE DISC

verifying and enforcing it in 4.3.3. Section 4.3.4 describes epoch-based

feeds which provide a search mechanism for feeds that receive sporadic

updates. Finally, in 4.3.5, we demonstrate how feeds can be used as

an outbox for sending and receiving subsequent messages within a

communication channel.

4.3.1 Feed chunks

A feed chunk is a single owner chunk with the associated constraint that

the identifier is composed of the hash of a feed topic and a feed index.

The topic is a 32-byte arbitrary byte array, typically the Keccak256 hash of

one or more human-readable strings specifying the topic and optionally

the subtopic of the feed (see Figure 4.10 for a visual representation).

32

32

65

8

chunk
content

32

20

keccack256
hash

BMT
hash

 4096

sign

account

I

32

32payload id

I

address

32
32

8

bytes

keccack256
hashindex

topic
I = identifier

I

signature

span

payload

Figure 4.10: Feed chunks are single owner chunks where the identifier is the

hash of the topic and an index. Indexes are deterministic sequences calculated

according to an indexing scheme. Subsequent indexes for the same topic

represent identifiers for feed updates.

The index of a feed can take various forms, defining some of the poten-

tial types of feeds. The ones discussed in this section are: (1) simple

feeds that use incremental integers as their index (4.3.2); (2) epoch-

based feeds that use an epoch ID (4.3.4); and (3) private channel feeds

CHAPTER 4. BUILDING ON THE DISC 157

that use nonces generated through a double ratchet key chain. (4.3.5).

The common characteristic among all these feed types is that both the

publisher (owner) and the consumer must be aware of the indexing

scheme in order to interact with the feed effectively.

Publishers have exclusive ownership of the feed chunks and are the only

ones authorised to post updates to their feed. Posting an update requires

(1) constructing the identifier from the topic and the correct index, and

(2) signing the identifier concatenated with the hash of the arbitrary

content of the update. Since the identifier designates an address in

the owner’s subspace of addresses, this signature effectively assigns the

payload to this address (see 2.2.3). In this way, all items published on a

particular feed can be verified to have been created solely by the owner

of the corresponding private key.

On the consumer side, users can retrieve a feed by specifying the chunk

address. Retrieving a specific update requires the consumer to construct

the address from the owner’s public key and the identifier. To calculate

the identifier, the user needs two pieces of information: the topic and the

appropriate index, for which they need to know the indexing scheme.

Feeds enable Swarm users to represent a sequence of content updates.

The content of each update serves as the payload, which the feed owner

signs against the identifier. The payload can be a swarm reference,

allowing users to retrieve the associated data.

4.3.2 Indexing schemes

Different types of feeds require different indexing schemes and different

lookup strategies. In the following sections, we introduce a few largely

independent dimensions in which feeds can be categorised and which

appear relevant in making a choice.

The actual indexing scheme used, or even the presence of one (i.e. if

the single-owner chunk is a feed chunk at all), is left unrevealed in

the structure of a feed chunk, as this information is not needed for

the validation of a chunk by forwarding nodes. Including the subtype

158 CHAPTER 4. BUILDING ON THE DISC

explicitly in the structure would only result in unnecessary information

leakage.

Update semantics

Updates of a feed can be categorised into three subtypes, each with

distinct semantics.

Feeds that represent revisions of the same semantic entity are called mu-

table resource updates. These resources mutate because the underlying

semantic entity undergoes changes, such as updates to your CV or the

expansion of a resource description, like the Wikipedia entry about a

Roman emperor. Users will typically be interested in the latest update

of such resources, with past versions having only historical significance.

As the term ’revision’ suggests, the interpretation of an update in the

case of mutable resources is substitutive.

The second subtype of feeds, known as series updates, represents a

series of content linked by a common thread, theme, or author. In a

series, each update is considered as an alternative and independent

instantiation or episode that unfolds in a chronological order, such as

include social media status updates, a person’s blog posts, or blocks of a

blockchain. Series updates present a cohesive narrative or progression

of information, allowing users to engage with the content in a sequential

and interconnected manner.

Finally, there are partitions expressed as feeds, where updates are meant

to be accumulative: subsequent updates are sequentially added to ear-

lier ones. A common example is a video stream that consists of multiple

parts. Partition feeds mainly differ from series in that the individual feed

updates are not meaningful or interpretable on their own. Instead, the

temporal sequence of updates may represent a processing order that

corresponds to some serialisation of the structure of the resource rather

than reflecting temporal succession. When accessing a partition feed, it

may be necessary to accumulate all the parts in order to ensure the in-

tegrity of the represented resource. This means that each update builds

on the previous ones, resulting in a comprehensive representation of

the entire resource.

CHAPTER 4. BUILDING ON THE DISC 159

If subsequent updates of a feed include a reference to a data structure

that indexes the previous updates (e.g. a key–value store using the

timestamp for the update or simply the root hash of the concatenation

of update content), then the lookup strategy in for all three feed types

reduces to retrieving the latest update.

Update frequency

Feeds that are updated over time may be categorised into several types.

Some are sporadic feeds with irregular asynchronicities, i.e. updates

that can have unpredictable gaps. Another type is periodic feeds, where

updates are published at regularly recurring intervals.

Additionally, we will discuss real-time feeds, where the update frequen-

cies may not follow a regular pattern but instead vary within the tem-

poral span of real-time human interaction, i.e. they are punctuated by

intervals in the second to minute range.

Subscriptions

Feeds can be interpreted as pub/sub systems that offer persistence,

enabling asynchronous pulls. In what follows, we analyse how the choice

of indexing scheme affects the implementation of subscriptions to feeds

as pub/sub.

In order to cater for subscribers of a feed, the updates need to be tracked.

When we have knowledge of the latest update, we can employ periodic

polling to fetch subsequent updates. If the feed is periodic, one can

start polling after a known period. Alternatively, if the feed updates

are frequent enough (at most a 1-digit integer orders of magnitude

rarer than the desired polling frequency), then polling is also feasible.

However, if the feed is sporadic and updates occur unpredictably, polling

may not be practical. In such scenarios, alternative methods like push

notifications (see 4.4.1 and 4.4.4) become preferable for ensuring timely

updates.

160 CHAPTER 4. BUILDING ON THE DISC

If we have missed out on polling for a period of time due to being offline,

or just created the subscription, we can also rely on push notifications

or use a lookup strategy to retrieve the necessary updates.

Looking up partitions poses no difficulty as each update needs to be

fetched and accumulated. In this case, the strategy of just iterating

over the successive indexes cannot be improved. For periodic feeds,

we can just calculate the index for a given time, hence asynchronous

access is efficient and trivial. However, looking up the latest version of

a sporadically updated feed requires some search and hence benefits

from epoch-based indexing.

Aggregate indexing

A set of sporadic feeds can be turned into a periodic one using feed ag-

gregation. Imagine, for example, a multi-user forum like Reddit, where

each registered participant would publish comments on a post using

sporadic feeds. In this scenario, would be impractical for each user to

monitor the comment feed of every other user and search through their

sporadic feeds for updates in order to retrieve all the comments on the

thread. A more efficient approach is to just do it once though for all users.

Indexers do exactly that: they aggregate everyone’s comments into an

index, a data structure whose root can then be published as a periodic

feed, see Figure 4.11. The frequency of updates can be chosen to provide

a real-time feed experience; even if the rate of change does not justify it,

i.e. some updates may be redundant, the cost amortises over all users

who use the aggregate feed, making it economically sustainable.

A service of this kind can be offered with arbitrary levels of security,

yet trustlessly, without relying on reputation. Using consensual data

structures for the aggregation, incorrect indexes can be proven using

affordable and concise inclusion proofs (see 4.1.1) and therefore any

challenges related to correctness can be evaluated on chain. Providers

face the risk of losing their deposit if a challenge remains unrefuted,

which acts as a strong incentive for them to uphold a high standard of

service quality.

CHAPTER 4. BUILDING ON THE DISC 161

Figure 4.11: Feed aggregation serves to merge information from several source

feeds in order to save consumers from duplicate work. Left: 6 nodes involved

in group communication (discussing a post, having real time chat, or asyn-

chronous email thread). Each node publishes their contributions as outbox

feed updates (small coloured circles). Each participant polls the other’s epoch-

based feeds, duplicating work with the lookup. Right: the 6 nodes now register

as sources with an aggregator which polls the nodes’ feed and creates indices

that aggregate the sources into one data structure which each participant can

then pull.

162 CHAPTER 4. BUILDING ON THE DISC

4.3.3 Integrity

We consider a feed to have integrity when each of its updates is unam-

biguous. Formally, this means that for each index, the respective feed

identifier is only ever assigned to a single payload. Incidentally, this also

implies that the corresponding feed chunk has integrity. As discussed

in 2.2.3, this is a prerequisite for consistent retrieval. If the payloads of

the successive updates are imagined as blocks of a blockchain, then the

criterion of integrity requires feed owners to avoid creating forks in their

chain.

In fact, the integrity of a feed can only be guaranteed by the owner. How-

ever, it is important to consider whether the integrity can be effectively

checked or enforced. Owners can commit to the integrity of their feeds

by staking a deposit on the blockchain, which they stand to lose if they

are found to double sign on an update. While this may provide a strong

disincentive to fork a feed in the long run, it alone does not offer suf-

ficient guarantees to consumers of the feed with respect to integrity.

Because of this, we must design indexing schemes that actively enforce

the desired integrity standards.

Authoritative version history

Mutable resource update feeds track versions pretty much the same

way as the Ethereum Name Service does. When a version is consoli-

dated, such as a website update, the owner wants to register the content

address of the current version. In order to guarantee that there is no

dispute over history, the payload needs to incorporate the hash of the

previous payload. This requirement implies that the payload must be a

composite structure. However, if the goal is to have a payload consisting

of solely a manifest or manifest entry so that it can be rooted to a URL

path or directly displayed, this is not possible. Additionally, if in cases

where the feed content is not a payload hash, ENS registers a payload

hash despite the absence of the corresponding chunk in Swarm, thus

violating the semantics of ENS.

CHAPTER 4. BUILDING ON THE DISC 163

An indexing scheme that incorporates the previous payload hash into

the subsequent index operates in a similar manner to a blockchain. It

expresses the owner’s unambiguous commitment to a particular history

and requires any consumer who reads and uses it to acknowledge and

accept that history. Looking up such feeds is only possible by retrieving

each update since the last known one. The address refers to the update

chunk, so registering the update address both guarantees historic in-

tegrity and preserves ENS semantics so that the registered address is

just a Swarm reference to a chunk. Such feeds establish an authoritative

version history, i.e. they provide a secure audit trail of the revisions

made to a mutable resource.

Real-time integrity check

A deterministically indexed feed provides the ability to perform a real-

time integrity check. In the context of feeds that represent blockchains

(ledgers/side-chains), integrity refers to having a non-forking and unique

chain commitment. The ability to enforce this in real-time allows fast

and secure definitions of transaction finality.

We illustrate this with an example of an off-chain p2p payment network

where each node’s locked-up funds are allocated to a fixed set of credi-

tors (see more detail in Trón et al. 2019a). The creditors of a node need

to verify the accuracy of the reallocations, i.e. that the total increases

are covered by countersigned decreases. If a debitor keeps publishing a

deposit allocation table for an exhaustive list of creditors, by issuing two

alternatives to targeted creditors, the debitors will be able to orchestrate

a double spend. Conversely, if there is certainty in the uniqueness of

this allocation table, the creditor can confidently conclude finality.

We claim that using Swarm feeds, this uniqueness constraint can be

verified in real-time.

The key insight is that it is impossible to meaningfully control the re-

sponses to a single owner chunk request: Even if an attacker has control

over the entire neighbourhood of the chunk address, there is no system-

164 CHAPTER 4. BUILDING ON THE DISC

atic way to respond with particular versions to particular requestors.2

This is due to the inherent ambiguity of the originator of the request

in the forwarding Kademlia protocol. Let us imagine that the attacker,

using some sophisticated traffic analysis, has the chance of 1/n (asymp-

totic ceiling) to identify the originator and give a differential response.

By sending multiple requests from random addresses, however, one can

test integrity and consider a consistent response a requirement for con-

cluding finality. The probability that the attacker can give a consistent

differential response to a creditor testing with k independent requests

is 1/nk . With linear bandwidth cost in k, we can achieve exponential

degrees of certainty about the uniqueness of an update. If a creditor

observes consistency in the responses, it can conclude that there is no

alternative allocation table.

By requiring the allocation tables to be disseminated as feed updates,

we can leverage the advantages of permissionlessness, availability, and

anonymity to enforce feed integrity. If the feed is a blockchain-like

ledger, a real-time integrity check translates to fork finality.

4.3.4 Epoch-based indexing

In order to use single owner chunks to implement sporadic feeds with

flexible update frequency, we introduce epoch-based feeds as an in-

dexing scheme. In this scheme, the identifier of a single owner chunk

incorporates anchors related to the time of publishing. In order to be

able to find the latest update, we introduce an adaptive lookup algo-

rithm.

Epoch grid

An epoch is a defined time period starting at a specific point in time,

known as the epoch base time, and lasts for a specific duration. The

2If the chunks are uploaded using the same route, the chunk that comes later will be

rejected as already known. If the two chunks originate from different addresses in

the network, they might both end up in their local neighbourhood. This scenario will

result in inconsistent retrievals depending on which node the request ends up with.

CHAPTER 4. BUILDING ON THE DISC 165

lengths of these periods are expressed as powers of 2 in seconds, ranging

from the shortest period of 20 = 1 second to the longest period of 231

seconds.

An epoch grid is the arrangement of epochs, where each row represents

an alternative partitioning of time into various disjoint epochs of the

same length. Rows, also known as levels, are indexed by the logarithm

of the epoch length putting level 0 with 1 second epoch length at the

bottom by convention, see Figure 4.12.

Figure 4.12: Epoch grid showing the first few updates of an epoch-based feed.

Epochs occupied are marked in yellow and are numbered to reflect the order of

updates they represent.

When representing a epoch-based feed in an epoch grid, each update is

assigned to a specific epoch within the grid based on its timestamp. In

particular, an update is mapped to the longest free epoch that includes

the timestamp. This structure gives the series of updates a contiguous

structure, which allows for easy search. The contiguity requirement im-

plies that by knowing the epoch of the previous update, the subsequent

update can be mapped to a specific epoch without ambiguity.

To identify a specific epoch within the epoch grid, we need to know

both the epoch base time and the level. This pair is called the epoch

reference. To calculate the epoch base time for any given instant in time

t at a particular level l , the l least significant bits of t are dropped. The

level requires one byte, and the epoch base time (using Linux seconds)

4 bytes, so the epoch reference can be serialised in 5 bytes. It is worth

noting that the epoch reference of the initial update of any epoch-based

feed is always the same.

166 CHAPTER 4. BUILDING ON THE DISC

Mapping epochs to feed update chunks

The serialised epoch reference serves as the feed index for mapping feed

updates to feed chunks. The topic of the feed hashed together with the

index results in the feed identifier used in constructing the single owner

chunk that expresses the feed chunk.

To determine the appropriate epoch for storing a subsequent update,

the publisher needs to know the location of the previous update. If

the publisher does not keep track of this information, they can use the

lookup algorithm to find their most recent update.

Lookup algorithm

When consumers retrieve feeds, their objectives typically revolve around

looking up the state of the feed at a particular time (historical lookup)

or to retrieving the latest update.

If historical lookups based on a target time are required, the update can

incorporate a data structure that maps timestamps to corresponding

states. In such cases, finding any update later than the target can be

used to deterministically look up the state at an earlier time.

If no such index is available, historical lookups need to find the shortest

filled epoch whose timestamp is earlier than the target.

To select the best starting epoch from which to walk our grid, we have

to assume the worst case scenario, which is that the resource has never

been updated since the last time we saw it. If we don’t know when the

resource was last updated, we assume it to be 0.

We can guess a start level as the position of the first non-zero bit of

lastUpdate⊻NOW counting from the left. The bigger the time difference

between the last update time and the current time, the higher the level

will be.

CHAPTER 4. BUILDING ON THE DISC 167

4.3.5 Real-time data exchange

Feeds can be used to represent a communication channel, i.e. the outgo-

ing messages of a persona. This type of feed, called an outbox feed can

be created to provide email-like communication or instant messaging,

or even the two combined. For email-like asynchronicities, epoch-based

indexing can be used, while deterministic sequence indexing is more

suitable for instant messaging. In group chat or group email, confiden-

tiality is managed through an access control trie over the data structure,

which indexes each party’s contribution to the thread. Communica-

tion clients can retrieve the feeds of each group member relating to a

particular thread and merge their timelines for rendering.

Even forums could be implemented with such an outbox mechanism

described above. However, as the number of registered participants

increases, aggregating all outboxes on the client side may become im-

practical. In such cases, index aggregators or other schemes may be

necessary to crowdsource the combination of the data.

Two-way private channels

Private two-party communication can also be implemented using out-

box feeds, see Figure 4.13. The parameters of such feeds are established

during the initial key exchange or registration protocol (see 4.4.2), en-

suring that the parties consent on the indexing scheme as well as the

encryption used.

For real-time instant messaging using a series feed, it is important to

have an indexing scheme that supports deterministic continuations for

at least a few updates ahead. This enables sending retrieve requests for

upcoming updates in advance, i.e. during or even prior to processing

the previous messages. When these retrieve requests arrive at the nodes

closest to the requested update address, it is expected that the chunk

will not be available since the other party will not have sent them yet.

However, even these storer nodes are incentivised to keep retrieve re-

quests alive until they expire (as discussed in 2.3.1). This means that up

until the end of their time-to-live setting (30 seconds), the requests will

168 CHAPTER 4. BUILDING ON THE DISC

Figure 4.13: Swarm feeds as outboxes for private communication. Outbox

feeds represent consecutive messages from a party in a conversation. The

indexing scheme can follow a key management system with strong privacy

which obfuscates the communication channel itself and renders interception

attacks prohibitively expensive.

CHAPTER 4. BUILDING ON THE DISC 169

function as subscriptions: the arrival of the update chunk triggers the

delivery response to the open request as if it was the notification sent to

the subscriber. This reduces the expected message latency to less than

twice the average time of one-way forwarding paths, see Figure 4.14.

Figure 4.14: Advance requests for future updates. The diagram shows the

timeline of events during instant messaging between two parties A and B, using

outbox feeds. The columns represent the neighbourhood locations of the feed

update addresses. The circles show the time of protocol messages arriving:

colors indicate the origin of data, empty circles are retrieve requests, and full

circles are push-sync deliveries arriving at the respective neighbourhood. Note

that the outbox addresses are deterministic 3 messages ahead, allowing retrieve

requests to be sent before the corresponding updates arrive.

Importantly, the latency between one party sending a message m and the other

receiving it is shown as δ(m). Messages A3 and A4 arrive before A2 which can

be reported and repaired. If address predictability was only limited to 1 message

ahead, both B2 and B3 would have much longer latencies.

Also note that the latencies of B2 and B3 are helped by advance requests: the

retrieve requests for B4 and B5 are sent upon receipt of B1 and B2 and arrive

at their neighbourhood at the same time as the messages B2 and B3 arrive at

theirs, respectively. If address predictability was limited to 1 message ahead,

this would negatively impact the latencies of B2 and B3.

Post-compromise security

A key management solution called double ratchet is the de-facto indus-

try standard used for encryption in instant messaging. It is customary

to use the extended triple Diffie–Hellmann key exchange (X3DH) to

170 CHAPTER 4. BUILDING ON THE DISC

establish the initial parameters for the double-ratchet key chains (see

4.4.2).

The double-ratchet approach combines a ratchet based on a continu-

ous key-agreement protocol with a ratchet based on a key-derivation

function (Perrin and Marlinspike 2016). This scheme can be generalised

(Alwen et al. 2019) and understood as a combination of well-understood

primitives. It has been demonstrated to provide (1) forward secrecy,

(2) backward secrecy,3 and (3) immediate decryption and message loss

resilience.

Figure 4.15: Future secrecy for update addresses

In addition to the confidentiality due end-to-end encryption, Swarm

offers further resistance against attacks. Due to the forwarding Kademlia

protocol, the sender can remain ambiguous and deniable. Furthermore,

the normal push-sync and pull-sync traffic helps to obfuscate messages.

To make it really hard for an attacker, the sequence of indexes can also

provide future secrecy if we add more key chains to the double-ratchet

machinery. Beside root, sending, and receiving encryption key chains,

two additional keys are introduced: outgoing and incoming outbox

3Also known as future secrecy or post-compromise security.

CHAPTER 4. BUILDING ON THE DISC 171

index key chains, see Figure 4.15. As a result of this measure, the under-

lying communication channel is obfuscated, i.e. intercepting an outbox

update chunk and knowing its index reveals nothing about previous or

subsequent outbox update indexes. This makes subsequent messages

prohibitively difficult and costly to monitor or intercept.

In 4.3.3, we used factoring in the payload hash into the indexing scheme

to achieve non-mergeability of chains (unambiguous history). Inspired

by this, we propose to also factor in the payload hash into the subse-

quent feed update index. This introduces an additional property called

recover security, which, intuitively, ensures that once an adversary man-

ages to forge a message from A to B, then no future message from A

to B will be accepted by B. This is guaranteed if the authenticity of A’s

messages to B affects the subsequent feed index. If there is a mismatch

(indicating a forged message), the messages will be looked up at the

wrong address, leading to the abandonment of the communication

channel and the initiation of a new one. By implementing this approach,

the communication channel achieves complete confidentiality and be-

comes a zero-leak solution for real-time messaging.

4.4 Pss: direct push messaging with mailboxing

This section introduces pss, Swarm’s direct node-to-node push mes-

saging solution. Functionalities of and motivation for its existence are

playfully captured by alternative resolutions of the term:

postal service on Swarm

Delivering messages if recipient is online or depositing for down-

load if not.
pss is bzz whispered

Beyond the association to Chinese whispers, it surely carries the

172 CHAPTER 4. BUILDING ON THE DISC

spirit and aspiration of Ethereum Whisper.4 Pss piggybacks on

Swarm’s distributed storage for chunks and hence inherits their full

incentivisation for relaying and persistence. At the same time it

borrows from Whisper’s crypto, envelope structure and API.
pss! instruction to hush/whisper

Evokes an effort to not disclose information to third parties, which is

found exactly in the tagline for pss: truly zero-leak messaging where

beside anonymity and confidentiality, the very act of messaging is

also undetectable.
pub/sub system

The API allows publishing and subscription to a topic.

First, in 4.4.1, we introduce Trojan Chunks, which are messages sent to

storers that masquerade as chunks whose content address happens to

fall in the proximity of their intended recipient. Section 4.4.2 discusses

the use of pss to send contact messages to establish real-time commu-

nication channels. In 4.4.3, we explore the mining of feed identifiers

to target a specific neighbourhood with the address of a single owner

chunk and present the construct of an addressed envelope. Finally,

building on Trojan chunks and addressed envelopes, 4.4.4 introduces

update notification requests.

4.4.1 Trojan chunks

Cutting-edge systems that promise private messaging often struggle to

offer truly zero-leak communication (Kwon et al. 2016). While linking

the sender and recipient is cryptographically proven to be impossible,

resistance to traffic analysis is harder to achieve. Maintaining sufficiently

large anonymity sets requires high volumes available at all times. In the

absence of mass adoption, guaranteeing high message rate in dedicated

messaging networks necessitates constant fake traffic. However, with

4Whisper is a gossip-based dark messaging system, which is no longer developed. It

never saw wide adoption due to its (obvious) lack of scalability. Whisper, alongside

Swarm and the Ethereum blockchain, was the communication component of the

holy trinity, the basis for Ethereum’s original vision of web3.

CHAPTER 4. BUILDING ON THE DISC 173

Swarm, there is an opportunity to disguise messages as chunk traffic,

effectively obfuscating the act of messaging itself.

We define a Trojan chunk as a content-addressed chunk with a fixed

internal content structure (see Figure 4.17):

span

8-byte little-endian uint64 representation of the length of the mes-

sage
nonce

32-byte arbitrary nonce
Trojan message

4064-byte asymmetrically encrypted message ciphertext with un-

derlying plaintext composed of

2-byte little-endian encoding of the length of the message in

bytes 0 ≤ l ≤ 4030,

32 byte obfuscated topic ID

m bytes of a message

4030−m random bytes.

Figure 4.16: A pss message is a Trojan chunk that wraps an obfuscated topic

identifier with a Trojan message, which in turn wraps the actual message pay-

load to be interpreted by the application that handles it.

Knowing the public key of the recipient, the sender follows a specific

process to send a trojan message. First, the message is wrapped in a tro-

jan message format by prefixing it with length information and padding

it to 4030 bytes. Then, the sender encrypts it using the recipient’s public

key to obtain the ciphertext payload of the trojan chunk by asymmet-

ric encryption. The sender then generates a random nonce such that

when it is prepended to the payload, the chunk hashes to an address

that starts with a destination target prefix. The destination target is a

bit sequence that represents a specific neighbourhood in the address

174 CHAPTER 4. BUILDING ON THE DISC

Figure 4.17: The Trojan chunk wraps an asymmetrically encrypted Trojan

message.

space. If the target is a partial address derived as a prefix of the recipi-

ent’s overlay address, matching the target means that the chunk falls in

the neighbourhood of the recipient. If only the public key is known, it

is assumed that it is the bzz account of the recipient, i.e. their overlay

address can be calculated from it5 (see 2.1.2). The sender then uploads

the resulting chunk to Swarm with postage stamps of their choice which

then ends up being synced to the recipient address’ neighbourhood. If

the recipient node is online and the bit length of the matching target

is greater than the recipient’s neighbourhood depth, they will receive

the chunk. In practice, targets should be n +c bits long, where n is the

estimated average depth in Swarm and c is a small integer.

Receiving Trojan messages

The recipient only knows that a chunk is a pss message once they have

successfully opened the Trojan message with the private key correspond-

ing to the public key that they advertise as their resident key (see 4.4.2)

and perform an integrity check/topic matching. Nodes that want to

receive such Trojan Messages will continue attempting to decrypt all

messages that they are closest to. Forwarding nodes (or anyone else

apart from sender and recipient) have no way to distinguish between

a random encrypted chunk and a Trojan message, which means that

communication is perfectly obfuscated as generic chunk traffic.

5Alternative overlays can be associated with a public key, and several public keys can

be listened on by a node at a particular address.

CHAPTER 4. BUILDING ON THE DISC 175

After the recipient has opened the envelope using asymmetric decryp-

tion, they proceed with a combined step of integrity check and topic

matching step. Knowing the length of the payload (from the first 2 bytes

of the message), the recipient takes the payload slice and calculates

the Keccak256 hash of it. For each topic the client is subscribed to, the

recipient then hashes the payload hash together with the topic. If the

resulting segment xor-ed with the topic matches the obfuscated topic

ID in the message, then the message is indeed meant as a message with

the said topic and the registered handler is called with the payload as

argument.

Mailboxing for asynchronous delivery

If the recipient is not online, the Trojan chunk will prevail as any other

chunk would, depending on the postage stamp it has. Whenever the

recipient node comes online, it pull-syncs the chunks from the closest

neighbourhood, including all Trojan chunks and their own unreceived

messages. In other words, through Trojan messages, pss automatically

provides asynchronous mailboxing functionality, allowing undelivered

messages to be preserved and accessible to the recipient when they

come online without any additional action needed from the sender. The

duration of mailboxing is controlled with postage stamps, just like the

storage of chunks, in fact, it is indistinguishable from regular chunk

storage.

Mining for proximity

The process of finding a hash close to the recipient address is anal-

ogous to mining blocks on the blockchain. The nonce segment in a

Trojan chunk also serves exactly the same purpose as a block nonce:

it provides sufficient entropy to guarantee a solution. The difficulty of

mining corresponds to the length of the destination target: The mini-

mum proximity order required to ensure that the recipient will receive

the message needs to be higher than the neighbourhood depth of the

176 CHAPTER 4. BUILDING ON THE DISC

recipient6 when it comes online, so it is logarithmic in the number of

nodes in the network. The expected number of nonces that need to be

tried per Trojan message before an appropriate content address is found

is exponential in the difficulty, and therefore equal to the number of

nodes in the network. In practice, mining a Trojan chunk will never be

prohibitively expensive or slow even for a single node, as the expected

number of computational cycles needed to find the nonce is equal to

the network size. Only a small delay in the second range may occur

in a network of a billion nodes, and even that is acceptable given that

Trojan messages are meant to be used only for one-off instances such as

initiations of a channel. Subsequent real-time exchanges will happen

using the previously described bidirectional outbox model using single

owner chunks.

Anonymous mailbox

Asynchronous access to pss messages is guaranteed as long as the

postage stamp has not expired. The receiver only needs to create a

node with an overlay address corresponding to the destination target

advertised to be the recipient’s resident address. This allows for the

creation of an anonymous mailbox, which can receive pss messages on

behalf of a client and then publish them on a separate, private feed. The

intended recipient can then read the messages whenever they come

back online.

Register for aggregate indexing

As discussed in 4.3.2, aggregate indexing services help nodes in moni-

toring sporadic feeds. For instance, a forum indexer can aggregate the

contribution feeds of registered members, enabling the efficient track-

ing and access to forum updates. In the case of public forums, off-chain

registration is a viable option that allows users to register without di-

6It makes sense to use the postage batch uniformity depth (see 3.3) as a heuristic

for the target proximity order when mining a Trojan chunk. This is available as a

read-only call to the postage stamp smart contract.

CHAPTER 4. BUILDING ON THE DISC 177

rectly interacting with the blockchain. This can be achieved by simply

sending a pss message to the aggregator.

4.4.2 Initial contact for key exchange

Encrypted communication requires a handshake protocol to establish

the initial parameters that are used as inputs to a symmetric key genera-

tion scheme. One such protocol is the extended triple Diffie–Hellmann

key exchange, or X3DH, is one such protocol (Marlinspike and Per-

rin 2016). X3DH is used to establish the initial parameters for a post-

handshake communication protocol, like the double-ratchet scheme

discussed earlier in the section on feeds (see 4.3.5).

To implement the X3DH protocol with pss in a serverless setting. Swarm

utilises the same primitives as are customary in Ethereum, i.e. secp256k

elliptic curve, Keccak256 hash, and a 64-byte encoding for EC public

keys.

The Swarm X3DH protocol facilitates the establishment of a shared se-

cret between two parties, which serves as the input used to determine

the encryption keys used during two-way messaging after the hand-

shake. The initiator is the party that initiates a two-way communication

with the responder. The responder is supposed to advertise the infor-

mation necessary to allow parties previously unknown to the responder

to initiate contact. Zero-leak communication can be achieved by first

performing an X3DH. This protocol is used to establish the seed keys

used by the double-ratchet protocol for the encrypting data, as well as

the feed indexing methodology used. This will enable the responder to

retrieve the updates of the outbox feed.

X3DH uses the following keys:7

K ENS
r

responder long-term public identity key

7The protocol specifies one-time pre-keys for the responder, but these can be safely

ignored since they only serve as replay protection, which is solved by other means in

this implementation.

178 CHAPTER 4. BUILDING ON THE DISC

K Res
r

responder resident key (aka signed pre-key)

K ID
i

initiator long-term identity key

K EPH
i

initiator ephemeral key for the conversation

Figure 4.18: The X3DH pre-key bundle feed update contains the resident key

and resident address and is optionally together encrypted with the ENS name

hash to prove uniqueness and provide authentication.

A pre-key bundle consists of all information the initiator needs to know

about responder. However, rather than storing this information on

external servers, it is instead stored in Swarm. For human-friendly

identity management, ENS can be optionally used to provide familiar

username-based identities. The owner of the ENS resolver represents

the authenticated long-term public identity key for the persona. By

utilising the long-term identity address, an epoch-based feed with a

topic ID can be created, indicating that it provides the pre-key bundle

for potential correspondents. When initiating communication with

a new identity, the initiator retrieves the latest update from the feed,

which contains the current resident key (aka signed pre-key) and current

addresses of residence, i.e. the (potentially multiple) overlay destination

targets where the persona expects to receive pss messages. The signature

within the feed update chunk signs both the resident key (cf. signed

pre-key) and the destination targets. The public key that is recovered

CHAPTER 4. BUILDING ON THE DISC 179

from this signature gives the long-term identity public key, see Figure

4.18.

Figure 4.19: X3DH initial message. Initiator retrieves the ENS owner as well as

the latest update of responder’s pre-key bundle feed containing the resident

key and resident address. Initiator sends their identity key and an ephemeral

key to responder’s resident address using the resident key for encryption.

In order to invite a responder to an outbox-feed based private communi-

cation channel, the initiator first looks up the responder’s public pre-key

bundle feed and sends an initial message to the responder (see Figure

4.19), indicating their intent to communicate. She then shares the pa-

rameters required to initiate the encrypted conversation, including the

public key of her long-term identity and the public key of the ephemeral

key-pair generated specifically for that conversation. These details are

delivered to the potential responder by sending a Trojan pss message

addressed to the responder’s current address of residence, which is also

advertised in their pre-key bundle feed.

Figure 4.20: X3DH secret key. Both parties can calculate the triple Diffie-

Hellmann keys and xor them to get the X3DH shared secret key used as the seed

for the post-handshake protocol.

180 CHAPTER 4. BUILDING ON THE DISC

After the responder receives this information, both parties have all the

ingredients needed to generate the triple Diffie-Hellmann shared se-

cret (see Figure 4.20).8 This shared secret constitutes the seed key for

the double-ratchet continuous key agreement protocol as used in the

signal protocol. The double-ratchet scheme ensures forward secrecy

and post-compromise security to the end-to-end encryption. By ap-

plying separate key-chains for the outbox feed’s indexing scheme, addi-

tional recover security, i.e. resilience to message insertion attack, can

be achieved. Most importantly, however, adding forward and backward

secrecy to outbox addresses, obfuscates the communication channel,

which renders sequential message interception contingent on the same

security assumptions as encryption. This eliminates the only known

attack surface for double-ratchet encryption. The obfuscation and deni-

ability of the channel based on outbox feeds, together with the initial

X3DH message being disguised, indistinguishable from a regular chunk,

warrants classifying this communication approach as zero-leak commu-

nication.

4.4.3 Addressed envelopes

Mining single owner chunk addresses

The question immediately arises whether it is feasible to mine single

owner chunks. Since the address in this case is the hash of a 32-byte

identifier and a 20-byte account address, the ID provides sufficient

entropy to mine addresses even if the owner account is fixed. So for a

particular account, if we discover an ID such that the resulting single

owner chunk address is close to a target overlay address, the chunk can

be used as a message, similar to Trojan chunks. Importantly, however,

8If the X3DH does not use one-time pre-keys, the initial message can in theory be

re-sent by a third party and lead the responder to assume genuine repeated requests.

Protocol replay attacks like this are eliminated if the post-handshake protocol adds

random key material coming from the responder. But the initial Trojan message can

also be required to contain a unique identifier, e.g. the nonce used for mining the

chunk. Reusing the ID is not possible since it leads to the same chunk.

CHAPTER 4. BUILDING ON THE DISC 181

since the address can be mined before the chunk content is associated

with it, this construct can serve as an addressed envelope.

Let us make explicit the roles relevant to this construct:

issuer (I)

creates the envelope by mining an address.
poster (P)

puts the content into the envelope and posts it as a valid single

owner chunk to Swarm.

owner (O)

possesses the private key to the account part of the address and can

thus sign off on the association of the payload to the identifier. This

effectively decides on the contents of the envelope.
target (T)

the constraint for mining: a bit sequence that must form the prefix

of the mined address. It represents a neighbourhood in the overlay

address space where the envelope will be sent. The length of the

target sequence corresponds to the difficulty for mining. The longer

this target is, the smaller the neighbourhood that the envelope will

be able to reach.
recipient (R)

the party whose overlay address has the target sequence as its prefix

and therefore the destination of the message.

The envelope can be perceived as open: since the poster is also the

owner of the response single owner chunk, they are able to control what

content is placed into the chunk. By constructing such an envelope, the

issuer effectively allows the poster to send an arbitrary message to the

target without the need for computational resources to mine the chunk.

See Figure 4.21.

When the poster wants to send a message to the recipient, they simply

need to create a Trojan message and sign it against the identifier using

the private key of the same account that the issuer used during the

address mining process. By doing so, the resulting chunk will be valid.

See Figure 4.22.

182 CHAPTER 4. BUILDING ON THE DISC

Figure 4.21: Stamped addressed envelopes timeline of events. Issuer I creates

the envelope encrypted for P with an identifier such that P as the single owner

of the chunk, produces an address that falls in the recipient R’s neighbourhood.

As a result, (only) P can fill the envelope with arbitrary content and then use

simple push-syncing to post it to R.

Figure 4.22: A stamped addressed envelope issued for P and addressed to R

consists of an identifier which is mined so that when used to create a single

owner chunk owned by P , it produces an address which falls within R’s neigh-

bourhood. This allows P to construct a message, sign it against the identifier

and using the postage stamp, post it using the network’s normal push-syncing

to R for free.

CHAPTER 4. BUILDING ON THE DISC 183

Pre-paid postage

These chunks exhibit the same behaviour as normal Trojan messages,

maintaining their privacy properties, and in some cases, even improving

them. The issuer/recipient can associate a random public key for en-

crypting the message or use symmetric encryption. If a postage stamp

is pre-paid for an address and given to someone to post later, they can

use push-sync to send the chunk to the target without the poster in-

curring any additional cost, as the postage has already been covered

by the stamped addressed envelope. This construct effectively imple-

ments addressed envelopes with pre-paid postage and serves as a base

layer solution for various high-level communication needs, such as (1)

push notifications to subscribers without any computational or finan-

cial postage burden on the sender, (2) free contact vouchers, and (3)

zero-delay direct message response.

Issuing a stamped addressed envelope

Issuing a stamped addressed envelope involves the following process:

assume

issuer I , prospective poster P , and prospective recipient R with

public keys K I ,KP ,KR and overlay addresses AI , AP , AR .

mine
I finds a nonce NR such that when used as an identifier to create a

single owner chunk, the address of the chunk hashes to HR , which

is in the nearest neighbourhood of AR .
pay postage

I signs HR to produce a witness for an appropriate postage payment

to produce stamp PSR .
encapsulate

package NR and PSR , which represent the pre-paid envelope pre-

addressed to recipient address, and encrypt it with KP then wrap it

as a Trojan chunk.

mine
find a nonce NP such that the Trojan chunk hashes to HP , which is

in the nearest neighbourhood of AP .

184 CHAPTER 4. BUILDING ON THE DISC

Receiving a stamped addressed envelope

A prospective poster P is assumed to receive a Trojan message that

consists of pre-paid envelope E . In order to open it, she carries out the

following steps:

decrypt

decrypt message with the private key belonging to KP

deserialise
unpack and identify PSR and NR , extract HR from PSR

verify

postage stamp PSR and check if NR hashed with the account for KP

results in HR to ensure the associated address is in fact owned by P .

store
store NR and PSR

Posting a stamped addressed envelope

When the poster wants to use the envelope to send an arbitrary message

M to R (with recipient R potentially unknown to the sender), they must

follow the following steps:

encrypt

encrypt the message content M with KR to create a payload and

wrap it in Trojan message T

hash
hash the encrypted Trojan message resulting in HT

sign

sign HT against the identifier NR using the private key that belongs

to KP , producing signature W
encapsulate

include nonce NR as ID, the signature W and the Trojan message T

as the payload of a valid single owner chunk with address HR

post

post the chunk with the valid stamp PSR

CHAPTER 4. BUILDING ON THE DISC 185

Receiving a posted addressed envelope

When R receives chunk with address HR

verify

verify postage stamp PSR and validate the chunk as a single owner

chunk with payload T .
decrypt

decrypt T with the private key belonging to KR .

deserialise
deserialise the plaintext as a Trojan message, identify the message

payload M and check its integrity.
consume

consume M .

4.4.4 Notification requests

This section elaborates on the concept of addressed envelopes and

presents three flavours, each implementing different types of notifica-

tions.

Direct notification from publisher

If an issuer wants to notify a recipient of the next activity on a feed,

she needs to construct a stamped addressed envelope embedded in

a regular Trojan message and send it to the publisher, as depicted in

Figure 4.23. If the issuer is also the recipient, the same account can be

used in both the request and the response envelope.

When the owner of a feed publishes an update, they include a reference

to the update chunk in the envelope and send it to the recipient. More

formally, the publisher creates a single owner chunk using the identifier

of the pre-addressed envelope and signs off on the identifier associated

with the feed update content as the payload of the single owner chunk.

Subsequently, the publisher, now acting as the poster, push-syncs the

chunk to the swarm. This process is known as direct notification from

publisher.

186 CHAPTER 4. BUILDING ON THE DISC

Figure 4.23: A direct notification request contains a reference to a feed and

wraps a pre-paid envelope that is mined for P (the publisher or a known dis-

tributor of the feed) and addressed to recipient R. The response follows the

same process as generic stamped addressed envelopes, with the only difference

being that the message is expected to be the feed update or a reference to its

content.

The Trojan message is encrypted using the public key and specifies in

its topic that it is a notification. As the address is mined to match the

recipient overlay address on a sufficiently long prefix, the message ends

up push-synced to the recipient’s neighbourhood. When the recipient

comes online and receives the chunk, she detects that it is intended as a

message. This can be done either by successfully decrypting the chunk

content using the key for the address they had advertised, or by looking

it up against the record of the address they saved when it was issued,

in the case where the recipient has issued the pre-addressed envelope

themselves. See Figure 4.24 for the timeline of events.

Notifications coming directly from publishers allow the poster to include

arbitrary content within the envelope. The poster, who is also the owner

of the envelope, has the authority to sign off on any content against

the identifier when posting the envelope. To create the notification

chunk address in advance, the issuer needs to know the account of the

prospective poster. However, it is not necessary for the feed update

CHAPTER 4. BUILDING ON THE DISC 187

Figure 4.24: Direct notification from publisher timeline of events. Issuer I con-

structs a prepaid envelope for the publisher or a known distributor of the feed

P/F and addresses to recipient R . Together with a feed topic I , it is sent to P/F

wrapped in a pss Trojan message. P/F receives it and stores the request. When

they publish the update, they wrap it in the envelope, i.e. sign the identifier

received from I against the feed update notification message and post it as a

chunk, which R will receive and hence, be notified of the feed update.

address to be fixed, making this scheme applicable to (sporadic) epoch-

based feeds.

Notification from neighbourhood

Consider a scenario where the owner of a feed has chosen not to reveal

their overlay (destination target) or has declined to implement noti-

fications. In this case, the feed is updated sporadically using simple

sequential indexing, making it impractical to rely on polling for check-

ing the latest update. Furthermore, the consumer may also go offline

at any given time. Is there a method to ensure that consumers are still

notified?

We introduce another construct, a neighbourhood notification, which

works without the issuer of the notification knowing the identity of

prospective posters. However, it requires the content or its hash to be

known in advance so that it can be signed by the issuer themselves.

To ensure that a recipient is notified of the next update, the issuer can

create a neighbourhood notification request by wrapping a message in

a Trojan chunk. This message contains an addressed envelope (identi-

fier, signature, and postage stamp) that the poster can use to construct

the single owner chunk that serves as the notification. Note that the

notification message need not contain any new information; simply

188 CHAPTER 4. BUILDING ON THE DISC

receiving it is sufficient for the recipient. The payload of the notification

contains the feed update address to indicate what it is a notification of.

Upon receiving the notification, the receiver can simply send a regular

retrieve request to fetch the actual feed update chunk that contains (or

points to) the content of the message. See Figure 4.25 for the structure

of neighbourhood notifications and notification requests.

Figure 4.25: Neighbourhood notification requests include not only the iden-

tifier and postage stamp but also a notification message and its signature,

attesting it against the address. Thus, P needs to construct the actual notifica-

tion and when publisher F posts their update to P ’s neighbour, P can post the

notification to recipient R.

If the notification only needs to contain the feed update address as its

payload, the association with the identifier can be signed off by the

issuers themselves. This signature, along with the identifier, should

be considered a necessary component of the envelope and must be

included in the notification request. Unlike open envelopes used with

publishers directly, neighbourhood notifications can be viewed as closed

envelopes, where the content is pre-approved by the issuer.

In this case, the issuer, not the poster, becomes the owner of the chunk,

and the signature is already available to the poster when they create

and post the notification. As a consequence, no public key or account

address information is required from the poster. In fact, the identity

CHAPTER 4. BUILDING ON THE DISC 189

of the poster does not need to be fixed, as any peer could qualify as

a candidate poster. Issuers can send the notification request to the

neighbourhood of the feed update chunk. The nearest neighbours will

keep holding the request chunk as specified by the attached postage

stamps until they receive the appropriate feed update chunk, which

confirms the receipt of the notification. See Figure 4.26 for the timeline

of events when using neighbourhood notifications.

Figure 4.26: Neighbourhood notification timeline of events. Issuer I mines an

identifier for a single owner chunk, with themselves as the owner, such that

the chunk address falls within recipient R’s neighbourhood. The issuer, being

the owner, also must sign the identifier against a prefabricated reminder and

remember which node should be notified. When P syncs the feed update, the

notification is sent to R through the usual push-sync mechanism.

But how can we make sure that notifications are not sent too early or

too late? While the integrity of notification chunks is guaranteed by the

issuer as their single owner, additional measures are required to prevent

nodes that manage the notifications from sending them prematurely. It

would be ideal if the notification could not be posted before the arrival

of the update, otherwise false alarms could be generated by malicious

nodes that service the request.

A simple measure is to symmetrically encrypt the message in the request

using a key that is only revealed to the prospective poster upon receiving

the feed update. For instance, the hash of the feed update identifier

can serve as that key. In order to reveal that the notification request

needs to be matched on arrival of the feed update, the topic must be left

190 CHAPTER 4. BUILDING ON THE DISC

unencrypted, so here we do not encrypt the pss envelope asymmetrically

but only the message and symmetrically.

Note that the feed update address as well as identifier can be known if

the feed is public, so neighbourhood notifications are to be used with

feeds whose subsequent identifiers are not publicly known.

Targeted chunk delivery

Normally, in Swarm’s DISC model, chunks are obtained using retrieve

requests, which are forwarded towards the designated neighbourhood

designated based on the requested chunk address (see 2.3.1). The first

node on the route that has the chunk will respond and deliver the chunk

as a backwarded response travelling back along the same route. In

certain cases, however, it may be beneficial to have a mechanism to

request a chunk from a specific neighbourhood where it is known to be

stored and send it to a different neighbourhood where it is known to be

needed. A construct called targeted chunk delivery is meant for such a

use case: the request is a Trojan pss message, while the response, the

delivery, must be a single owner chunk that wraps the requested chunk.

The address of this delivery chunk is mined to fall into the recipient’s

neighbourhood.

These ’chunk-in-a-soc’ responses are structurally similar to neighbour-

hood notifications in that the payload’s hash is already known (the

content address of the chunk requested). The requestor can then sign

off on its association with the identifier and include it, along with the sig-

nature, in the request message (see Figure 4.28). When a node receives

such a request and has the requested chunk stored, it can construct a

valid single owner chunk addressed to the recipient’s neighbourhood as

a response. This makes the request generic, i.e. not tied to the identity

of the prospective poster, therefore it can be sent to any neighbourhood

that requires the content. Even multiple requests can be sent simultane-

ously, as the uniqueness of the valid response ensures the integrity of

chunks (see 2.2.3 and 4.3.3). Targeted delivery is used in missing chunk

recovery, see 5.2.3.

CHAPTER 4. BUILDING ON THE DISC 191

Figure 4.27: Targeted chunk deliveries are similar to neighbourhood notifica-

tions in that they are pre-addressed, pre-paid, and pre-signed. Similarly, the

identifier is mined so that given issuer I as the owner, it produces an chunk

address that falls in recipient R’s neighbourhood. Here, the issuer signs the

identifier against the hash of a content addressed chunk that they want to see

posted to R. If the targeted chunk delivery request lands with any node that

has the requested chunk, they can use the envelope and the chunk’s content to

produce a valid response, which is a single owner chunk wrapping a content

addressed chunk.

Figure 4.28: Targeted chunk delivery timeline of events. Uploader U uploads

a chunk to Swarm, and it lands with a storer node S. Nodes within P replicate

and pin this chunk. Now, if issuer I wants this chunk delivered to R, they take

the prepaid envelope addressed to R and send it unencrypted to the neighbour-

hood of a known host. This way, anyone who has the chunk can construct the

notification and send or store it for later.

192 CHAPTER 4. BUILDING ON THE DISC

The difference is that neighbourhood notifications do not provide any

new information, while targeted chunk delivery supplies the chunk data.

Additionally, a chunk delivery wrapped in a single owner chunk does

not involve message wrapping and does not have a topic. Encryption is

not used in either the request or response. A consequence of not using

encryption is that if there are multiple targets, it is sufficient for the

initial Trojan request to match any one of these targets.

Table 4.1 summarises various properties of the three notification-like

constructs.

type owner poster request encryption notification

direct poster publisher asymmetric on pss feed update content

neighbourhood issuer any symmetric on envelope feed update arrival

targeted delivery issuer any none chunk content

Table 4.1: Requests of and responses to types of feed update notifications and

targeted chunk delivery.

5. PERSISTENCE

In this chapter, we focus on data persistence, i.e. the ways of ensuring

that content remains available on Swarm. We introduce error coding

schemes that can provide cross-neighbourhood redundancy to secure

availability against churn, albeit at the cost of increased storage over-

head. In particular, erasure codes (5.1) and entanglement codes provide

redundancy optimised for documents with different access patterns. Ad-

ditionally, we introduce the notion of local pinning in 5.2, allowing users

to mark specific content as "sticky" in their Swarm local storage. We

will discuss how this local pinning can help achieve global persistence

across the network through the concept of stewardship. We define a

missing chunk notification protocol, which allows content maintainers

to ensure that their published content is restored in case some chunks

are garbage collected. This restoration is facilitated by proxying retrieval

through selected content pinners.

In Section 5.3, we discuss how an immutable chunk store can support

user-controlled deletion of content.

5.1 Cross-neighbourhood redundancy: erasure

codes and dispersed replicas

First, in 5.1.1, we introduce erasure codes. We then walk through in 5.1.2

how they are applied to files in Swarm. In 5.1.3, we present a construct

that enables cross-neighbourhood redundancy for singleton chunks

that completes erasure coding. Finally, in 5.1.4, we explore systematic

193

194 CHAPTER 5. PERSISTENCE

codes that facilitate various retrieval strategies of erasure-coded files,

while preserving random access capabilities.

5.1.1 Error correcting codes

Error correcting codes are widely utilised in the context of data storage

and transfer to ensure data integrity even in the face of a system fault.

Error correction schemes define how to rearrange the original data by

adding redundancy to its representation before upload or transmission

(encoding) so that it can correct corrupted data or recover missing

content upon retrieval or reception (decoding). The different schemes

are evaluated by quantifying their strength (tolerance, in terms of the

rate of data corruption and loss) as a function of their cost (overhead, in

terms of storage and computation).

In the context of computer hardware architecture, synchronising arrays

of disks is crucial to provide resilient storage in data centres. In erasure

coding, in particular, the problem can be framed as follows: How does

one encode the stored data into shards distributed across the disks

so that the data remains fully recoverable in the face of an arbitrary

probability that any one disk becomes faulty? Similarly, in the context

of Swarm’s distributed immutable chunk store, the problem can be

reformulated as follows: How does one encode the stored data into

chunks distributed across neighbourhoods in the network so that the

data remains fully recoverable in the face of an arbitrary probability that

any one chunk is not retrievable?1

Reed-Solomon coding (RS) (Bloemer et al. 1995, Plank and Xu 2006, Li

and Li 2013) is the father of all error correcting codes and also the most

widely used and implemented.2 When applied to data of m fixed-size

blocks (message of length m), it produces an encoding of m +k code-

words (blocks of the same size) in such a way that having any m out of

1It is safe to assume that the retrieval of any one chunk will fail with equal and inde-

pendent probability.
2For a thorough comparison of an earlier generation of implementations of RS, see

Plank et al. (2009).

CHAPTER 5. PERSISTENCE 195

m +k blocks is enough to reconstruct the original data. Conversely, k

puts an upper bound on the number of erasures allowed (number of

blocks unavailable) for full recoverability, i.e., it expresses (the maxi-

mum) loss tolerance.3 k is also the count of parities, quantifying the data

blocks added during the encoding on top of the original volume, i.e., it

expresses storage overhead. While RS is, therefore, optimal for storage

(since loss tolerance cannot exceed the storage overhead), it has high

bandwidth demands4 for local repair processes.5 The decoder needs

to retrieve m chunks to recover a particular unavailable chunk. Hence,

ideally, RS is used on files which are supposed to be downloaded in full,6

but it is inappropriate for use cases needing only local repairs.7

When using RS, it is customary to use systematic encoding, which means

that the original data forms part of the encoding, i.e., the parities are

actually added to it.

5.1.2 Erasure coding in the Swarm hash tree

Swarm uses the Swarm hash tree to represent files. This structure is a

Merkle tree (Merkle 1980), whose leaves are the consecutive segments

of the input data stream. These segments are turned into chunks and

are distributed among the Swarm nodes for storage. The consecutive

chunk references (either in the form of an address or an address and

an encryption key) are written into a chunk on a higher level. These so-

3Error correcting codes that has a focus on correcting data loss are referred to as erasure

codes, a typical scheme of choice for distributed storage systems (Balaji et al. 2018).
4Both the encoding and the decoding of RS codes takes O(mk) time (with m data

chunks and k parities). However, we found computational overhead insignificant in

the context of chunk retrieval happening via network transfer.
5Entanglement codes (Estrada-Galinanes et al. 2018, 2019) require a minimal band-

width overhead for a local repair, but at the cost of storage overhead that is in multiples

of 100%.
6Or in fragments large enough to include the data span over which the encoding is

defined, such as videos.
7Use cases requiring random access to small amounts of data (e.g., path lookup)

benefit from simple replication to optimise on bandwidth, which is suboptimal in

terms of storage (Weatherspoon and Kubiatowicz 2002).

196 CHAPTER 5. PERSISTENCE

called packed address chunks (PACs) constitute the intermediate chunks

of the tree. The branching factor b is chosen so that the references to its

children fill up a full chunk. With a reference size of 32 or 64 (hash size

32) and a chunk size of 4096 bytes, b is 128 for unencrypted, and 64 for

encrypted content (see Figure 5.1).

root hash

h1 h2 h3 · · · h128

h1
1 h1

2
· · · h1

128 h2
1 h2

2
· · · h2

128
· · ·

chunk 1 chunk 2 · · · chunk 129 · · · chunk N

Figure 5.1: The Swarm tree is the data structure encoding how a document is

split into chunks.

Note that on the right edge of the hash tree, the last chunk of each level

may be shorter than 4K: in fact, unless the file is exactly 4 ·bn kilobytes

long, there is always at least one incomplete chunk. Importantly, it makes

no sense to wrap a single chunk reference in a PAC, so it is attached to

the first level where there is open chunks. Such "dangling" chunks will

appear if and only if the file has a zero digit in its b-ary representation.

During file retrieval, a Swarm client starts from the root hash reference

and retrieves the corresponding chunk. Interpreting the metadata as

encoding the span of data subsumed under the chunk, it decides that

the chunk is a PAC if the span exceeds the maximum chunk size. In case

of standard file download, all the references packed within the PAC are

followed, i.e., the referenced chunk data is retrieved.

PACs offer a natural and elegant way to achieve consistent redundancy

within the swarm hash tree. The input data for an instance of erasure

CHAPTER 5. PERSISTENCE 197

coding is the chunk data of the children, with the equal-sized bins

corresponding to the chunk data of the consecutive references packed

into it. The idea is that instead of having each of the b references packed

represent children, only m would, and the rest of the k = b −m would

encode RS parities (see Figure 5.2).

The chunker algorithm that incorporates PAC-scoped RS encoding would

work as follows:

1. Set the input to the actual data level and produce a sequence

of chunks from the consecutive 4K segments of the data stream.

Choose m and k such that m +k = b is the branching factor (128

for unencrypted, and 64 for encrypted content).

2. Read the input one chunk at a time. Count the chunks by incre-

menting a counter i .

3. Repeat Step 2 until either i = m or there’s no more data left.

4. Use the RS scheme on the last i ≤ m chunks to produce k parity

chunks resulting in a total of n = i +k ≤ b chunks.

5. Concatenate the references of all these chunks to result in a packed

address chunk (of size h ·n of the next level) of the level above. If

this is the first chunk on that level, set the input to this level and

spawn this same procedure from Step 2.

6. When the input is consumed, signal the end of input to the next

level and quit the routine. If there is no next level, record the

single chunks as the root chunk and use the reference to refer to

the entire file.

This pattern repeats itself all the way down the tree. Thus, hashes Hm+1

through H127 point to parity data for chunks pointed to by H0 through

Hm . Since parity chunks Pi do not have children, the tree structure does

not have uniform depth.

5.1.3 Incomplete chunks and dispersed replicas

If the number of file chunks is not a multiple of m, it is not possible to

proceed with the last batch in the same way as the others. We propose

that we encode the remaining chunks with an erasure code that guaran-

198 CHAPTER 5. PERSISTENCE

H Swarm root hash

H0

H0

H0

H0

C0

H1

C1

H111 P0 P15

H1 H111 P0 P15

H1 H111 P0 P15

H1 H111

H0 H1 H111

H0 H1 H111

H0 H1 H111

Cm

P0 P15

P0 P15

P0 P15

P0 P15. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...

...
.

.

.

Figure 5.2: The Swarm tree with extra parity chunks using m = 112 out of

n = 128 RS encoding. Chunks P0 through P15 are parity data for chunks H0

through H111 on every level of intermediate chunks.

tees at least the same level of security as the others.8 Overcompensating,

we still require the same number of parity chunks even when there are

fewer than m data chunks.

This leaves us with only one corner case: it is not possible to use our

m-out-of-n scheme on a single chunk (m = 1) because it would amount

to k +1 copies of the same chunk. The problem is that copies of the

same chunk all have the same hash and therefore are automatically

deduplicated. Whenever a single chunk is left over (m = 1) (i.e., the root

chunk itself), we would need to replicate the chunk in a way that (1)

ideally, the replicas are dispersed in the address space in a balanced way,

yet (2) their addresses can be known by retrievers who ideally only know

the reference to the original chunk’s address.

Our solution uses Swarm’s special construct, the single owner chunk

(SOC; see 2.2.3). Replicas of the root chunk are created by making the

chunk data the payload of a number of SOCs. The addresses of these

SOCs must be derivable from the original root hash following a deter-

ministic convention shared by uploaders and downloaders.

8Note that this is not as simple as choosing the same redundancy. For example, a

50-out-of-100 encoding is much more secure against loss than a 1-out-of-2 encoding,

even though the redundancy is 100% in both cases.

CHAPTER 5. PERSISTENCE 199

The address of a SOC is the hash of its ID and the Ethereum address

of its owner. In order to create valid SOCs, uploaders need to sign the

SOC with the owner’s identity, therefore the owner of the SOC must be a

consensual identity with their private key publicly revealed. 9

The other component of the address, the SOC ID, must satisfy two cri-

teria: (1) it needs to match the payload hash up to 31 bytes and (2) it

must provide the entropy needed to mine the overall chunk into a suffi-

cient number of distinct neighbourhoods. (1) is added as a validation

criterion for the special case of replica SOCs, while (2) takes care that

we can find replicas uniformly dispersed within the address space. This

construct is called dispersed replica:

Let us assume c is the content-addressed chunk we need to replicate;

n is the number of bits of entropy available to find the nonces that

generate 2k perfectly balanced replicas; initialise a chunk array ρ of

length 2k and start with n-bit integer i = 0 and replica counter C = 0.

1. Create the SOC ID by taking addr(c) and changing the last byte (at

index position 31) to i .

2. Calculate the the SOC address by concatenating ID i d and owner

o10 and hash the result using the Keccak256 base hash ai := H (i d ⊕o),

and record ci = SOC(i d ,o,c).

3. Calculate the bin this hash belongs to by taking the k-bit prefix as

big-endian binary number j between 0 ≤ j < 2k .

4. If ρ[j] is unassigned, then let ρ[j] := ci and increment C .

5. If C = 2k , then quit.

6. Increment i by one, if i = 2n , then quit.

7. Repeat from Step 1.

9This has the added benefit that third parties can also upload replicas of any chunk.
10The single-owner chunk representing the dispersed replicas must be signed by

the arbitrary private key 0x010000000...0000000. The corresponding ethereum

address is 0xdc5b20847f43d67928f49cd4f85d696b5a7617b5.

200 CHAPTER 5. PERSISTENCE

With this solution, we are able to provide an arbitrary level of redun-

dancy for the storage of data of any length. 11

Then, depending on the strategy, the downloader can choose which

address to retrieve the chunk from. The obvious choice is the replica

closest to the requesting node’s overlay address.

5.1.4 Prefetching strategies for retrieval

When downloading, systematic per-level erasure codes allow for differ-

ent prefetching strategies:

NONE = direct with no recovery; frugal

No prefetching takes place, RS parity chunks are ignored if present.

Retrieval involves only the original chunks, no recovery.
DATA = prefetching data but no recovery; cheap

Prefetching data-only chunks, RS parity chunks are ignored if present,

no recovery.
PROX = distance-based selection; cheap

For all intermediate chunks, first retrieve m chunks that are ex-

pected to be the fastest to download (e.g., the m closest to the

node).
RACE = latency optimised; expensive

Initiate requests for all chunks within the scope (max m +k) and

will need to wait only for the first m chunks to be delivered in order

to proceed. This is equivalent to saying that the k slowest chunk re-

trievals can be ignored, therefore this strategy is optimal for latency

at the expense of cost.

All in all, strategies using recovery can effectively overcome the occa-

sional unavailability of chunks, be it due to faults such as network con-

tention, connectivity gaps in the Kademlia table, node churn, overpriced

11Note that if n is small, then generating all 2k balanced replicas may not be achievable,

and if n < k, this is certainly not possible. In general, given n,k at least m miss has a

probability of (1−m/2k)2n
.

CHAPTER 5. PERSISTENCE 201

neighbourhoods, or even malicious attacks targeting a specific neigh-

bourhood.

Similarly, given a typical model of network latencies for chunk retrieval,

erasure codes in RACE mode can guarantee an upper limit on retrieval

latencies.12

5.2 Data stewardship: pinning, reupload and

recovery

This section introduces the notion of pinning, i.e. a method to pro-

tect locally sticky content from being removed through the garbage

collection routines of its storage nodes (5.2.1). In 5.2.2, we discuss how

content pinners can play together to pin content for the entire network

globally. Section 5.1 defines a recovery protocol that downloaders can

use to notify storers of missing chunks belonging to content they are

responsible for pinning globally. With such on-demand repair and the

uninterrupted download experience it enables, recovery implements

a poor man’s persistence measure that can ensure the network-wide

availability of specific chunks without requiring the financial outlay of

insurance.

5.2.1 Local pinning

Local pinning is the mechanism that makes content sticky and prevents

it from being garbage collected. It anchors the content only in the node’s

local storage to enable local persistence of data and speedy retrieval.

The pinning process operates at the level of individual chunks within

the client’s local database and exposes an API for users to pin and unpin

files and collections in their local node (see 6.1.4).

12For instance, in the temporally sensitive case of real-time video streaming, for any

quality setting (bitrate and FPS), buffering times can be guaranteed if the batch

of chunks representing a time unit of media is encoded using its own scope(s) of

erasure coding.

202 CHAPTER 5. PERSISTENCE

In order to pin all the chunks comprising files, clients need to maintain

a reference count for each chunk. This count is incremented when a

chunk is pinned and decremented when the chunk is unpinned. As

long as the reference count remains non-zero, the chunk is considered

to be part of at least one pinned document and is therefore immune

to garbage collection. Only when the reference count returns to zero—

meaning the chunk has been unpinned for every time it was previously

pinned—does it become eligible for garbage collection again.

Local pinning can be thought of as a feature that allows Swarm users

to mark specific files and collections as important, and therefore not

removable. Pinning a file in local storage will also make it perpetually

accessible for the local node, even without an internet connection. As

a result, using pinned content for the storage of local application data

enables an offline-first application paradigm, with Swarm seamlessly

managing network activity upon re-connection. However, if a chunk is

not within the node’s area of responsibility, local pinning alone is not

enough to ensure the chunk’s availability to other nodes, in a general

sense. This limitation arises due to the pinner not being in the Kademlia

neighbourhood where the chunk is meant to be stored and subsequently

searched for when requested using the pull-sync protocol. In order to

provide this functionality, we must implement a second half of the

pinning protocol.

5.2.2 Global pinning

If a chunk is removed due to garbage collection by storers in its desig-

nated neighbourhood, local pinning in nodes elsewhere in the network

cannot independently retrieve it. In order for pinning to aid global

network persistence, two challenges must be addressed:

— global pinners need to be notified when a chunk belonging to the

content they have pinned is missing, so they can re-upload it,

— chunks that are garbage collected but globally pinned must re-

main retrievable, ensuring uninterrupted downloads for users.

CHAPTER 5. PERSISTENCE 203

One naive way to achieve this is to periodically check for pinned chunks

in the network and re-upload the contents if they are not found. How-

ever, this method involves a lot of superfluous retrieval attempts, has

immense bandwidth overhead, and ultimately provides no reduction in

latency.

An alternative, reactive way is to organise notifications to the pinner

which are somehow triggered when a user attempts to access the pinned

content but encounters an unavailable chunk. Ideally, the downloader

would send a message to the pinner that triggers two actions: (1) the

re-upload of the missing chunk, and (2) the delivery of the chunk in

response to the downloader’s request.

Fallback to a gateway

Let us assume that a set of pinner nodes have locally pinned the content

and our task is to allow fallback to these nodes. In the simplest scenario,

we can set up the node as a gateway (potentially load-balancing to a set

of multiple pinner nodes): Users learn of this gateway if it is included

in the manifest entry for the file or collection. If the user is unable to

download the file or collection from the Swarm due to a missing chunk,

they can simply resort to the gateway and find all chunks locally. This

solution benefits from simplicity and therefore is likely to be the first

milestone towards achieving global persistence.

Mining chunks to pinners’ neighbourhoods

A more sophisticated solution, albeit with more complexity, involves

the publisher organising the chunks of a file in a way that they all fall

within the neighbourhood of the pinner (or of any pinner node in the

set). In order to do this, the publisher needs to find an encryption key

for each chunk of the file so that the encrypted chunk’s address matches

204 CHAPTER 5. PERSISTENCE

one of the pinners on at least their first d bits, where d is chosen to be

comfortably larger than that pinner’s likely neighbourhood depth.13

These solutions can achieve persistence, but they also reintroduce a de-

gree of centralisation and place the burden of maintaining and control-

ling server infrastructure on publishers. Additionally, they suffer from

the usual drawbacks of server-client architecture, namely decreased

fault-tolerance and the likelihood of compromised performance due

to more concentrated requests. These solutions also fail to address the

question of content distribution to pinner nodes and neglect privacy

considerations. For these reasons, although the low-level pinning API

is provided for Swarm users, it is a less desirable alternative to the in-

centivised file insurance system, which is seen as the gold standard. As

such, use cases should be carefully evaluated to ensure that they would

not benefit from the enhanced privacy and resilience provided by the

incentivised system.

5.2.3 Recovery

In the following section, we outline a simple protocol for notifying pin-

ners about the loss of a chunk. Pinners can then react by (1) re-uploading

the lost chunk to the network and at the same time (2) responding to

the notifier by delivering to them the missing chunk.

When replicas of a chunk are distributed among willing hosts (pinners),

downloaders who cannot locate a particular chunk can fall back to a

recovery process by requesting it from one of these hosts using the miss-

ing chunk notification protocol called prod. As usual, the resolutions of

this acronym capture the properties of the protocol:

protocol for recovery on deletion

A protocol between requestor and pinners to orchestrate chunk

13It is important to note that if the pinner nodes do not share infrastructure and the

mined chunks need to be sent to pinners with the push-sync protocol, then each

postage batch used will be used a maximum of n times. Although this non-uniformity

implies a higher unit price, if pinners choose to pin content out of altruism (i.e. not

for compensation), only a minimum postage price needs to be paid.

CHAPTER 5. PERSISTENCE 205

recovery after garbage collection. The process is triggered by down-

loaders when they fail to retrieve a chunk.
process request of downloader

Recovery hosts continuously listen for potential recovery requests

from downloaders.
provide repair of DISC

Prod provides a service to repair the Swarm DISC in the event of

data loss.
pin and re-upload of data

Hosts pin the data and re-upload it to its designated area upon

receiving a recovery request.
prompt response on demand

If the requestor demands a prompt direct response, the host will

post the missing chunk using a recovery response envelope along

with the required postage stamp.

Recovery hosts

Recovery hosts are pinners who voluntarily provide pinned chunks for

the purpose of recovery. These pinners have explicitly indicated their

willingness to take on this task to the publisher and to have downloaded

all the relevant chunks and have pinned them in their local instance.

To advertise their publication as globally pinned or repairable, publish-

ers gather the overlay addresses of these volunteering recovery hosts. In

fact, it is sufficient to collect just the prefixes of the overlay with a length

greater than Swarm’s depth. These partial addresses are referred to as

recovery targets.

Publishers will advertise the recovery targets for their content to data

consumers via a feed called a recovery feed. Consumers can track this

feed following a convention that constructs the topic using a simple

sequential indexing scheme.

Recovery request

Once the recovery host’s overlay targets are revealed to the downloader

node, the downloader should "prod" one of the recovery hosts by send-

206 CHAPTER 5. PERSISTENCE

Figure 5.3: The process of notifying about a missing chunk is similar to that

of targeted chunk delivery. Here, a downloader mines the identifier to match

their own address, i.e. a self-notification. If downloader D encounters a missing

chunk (a request times out), they send a recovery request to one of several

neighbourhoods where there is a possibility of finding the missing chunk. If

the recovery request is successful, D receives a response in the form of a single

owner chunk that wraps the missing chunk. The chunk is also re-uploaded to

the appropriate location within the network.

ing them a recovery request whenever a missing chunk is encountered.

This instance of targeted chunk delivery (see 4.4.4) is a public unen-

crypted Trojan message that contains at least the address of the missing

chunk (see Figure 5.4).

In order to create a recovery request, a downloader needs to (1) create

the payload of the message (2) find a nonce that, when prepended to the

payload, produces a content address that matches one of the recovery

targets indicated by the publisher. The matching target indicates that

push-syncing the chunk will send it to the recovery host’s neighbour-

hood associated with that target prefix.

If the targeted recovery host is online, they will receive the recovery

request, extract the address of the missing chunk, retrieve the corre-

sponding chunk from their locally pinned storage, and re-upload it to

the network with a new postage stamp.

CHAPTER 5. PERSISTENCE 207

Figure 5.4: A recovery request is a Trojan chunk used for missing chunk no-

tification. It is unencrypted and its payload is structured as a pss message

containing the address of the chunk that needs to be recovered. Optionally, the

recovery request also includes a special recovery response envelope, which is

an identifier with a signature verifying the association between the identifier

and the missing chunk hash.

Recovery response envelope

A recovery response envelope is used to enable recovery hosts to promptly

and directly respond to the originator of the recovery request, without

incurring additional costs or computational burdens. It is a form of

targeted chunk delivery response (see 4.4.4), which is an addressed en-

velope construct that remains neutral to the poster but fixed for the

content. The request message includes the necessary components for

prospective posters to create the valid targeted chunk delivery response:

an identifier with a signature that verifies the association between the

identifier and the missing chunk hash. The identifier is chosen so that

the address of the single owner chunk (the hash of the ID with the owner

account) falls into the requestor’s neighbourhood and is automatically

delivered by the network’s push-sync protocol implementation.

If the targeted recovery host is online, they receive the recovery request

and extract the missing chunk address, identifier, and signature from

the recovery response. After retrieving the corresponding chunk pinned

in their local storage, they can proceed to create the recovery response.

To create the recovery response, the recovery host combines the hash

of the identifier and the payload hash to form the plain text of the sig-

nature. The signature received in the recovery request allows her to

recover the public key of the requestor. Using this public key, they are

able to calculate the requestor’s address and finally, by hashing the re-

208 CHAPTER 5. PERSISTENCE

Figure 5.5: Recovery response is a single owner chunk that wraps the missing

chunk. Anyone in possession of the headers and the chunk data is able to

construct a valid single owner chunk and send it to the downloader for free.

questor’s address with the identifier, obtain the address of the single

owner chunk. It is beneficial to attach a postage stamp to the request,

which can be sent along with the recovery response. Requestors have

the ability to cover the Swap costs associated with returning the chunk,

compensating the global pinner. This scheme enables downloaders to

intelligently cover the operating costs of nodes through micro-payments,

thus ensuring the availability of data throughout the network.

5.3 Dream: deletion and immutable content

The increasing digitisation of data and the widespread use of cloud ser-

vices have amplified concerns surrounding the privacy and control of

personal information like never before. In response, regulators often

impose requirements on removability without recognising that it is vir-

tually impossible to make material once seen become unseen. However,

the reality is that entities operating infrastructure that underpins digital

publishing have control over the technology that serves the content

and can implement "removal" by denying access. This centralised gate-

keeping approach may seem appealing from a regulatory standpoint,

as it can be thought of as an instrument of law enforcement. Although

such interventions rarely address the breach of unrealistic privacy rights,

CHAPTER 5. PERSISTENCE 209

the gate-keeper still provides a well-defined responsible party with the

effective course of action: not serving censored content. While this gives

the unwary a phony sense of security, it only exemplifies the larger issue

of censorship: publishing platforms possess the technological means

to filter content, and centralised control makes it more affordable to

exert influence over the content. What starts out as sensible measures

of content curation gradually transforms into extant censorship. This is

all the more problematic with social platforms that have gained quasi-

monopolistic status as a result of network effects. Due to the high costs

associated with switching platforms, innocent content creators increas-

ingly find themselves ’deplatformed’. Similarly, the ability to identify

hosts and deny access to content through legal means gives powers to

be the means to infringe on freedom of speech.

In the decentralised paradigm of web 3, there is no longer a single op-

erating entity controlling the publishing platform or the hosting infras-

tructure. This renders the cost of censorship infeasible. And yet, the

potential permanent exposure of personal data remains a significant

concern for most individuals. Therefore, there is a need for novel solu-

tions that can restore the sense of security that centralised gate-keepers

purportedly represent.

5.3.1 Deletion and revoking access

First, notice that any reference to removal of information in the sense

of erasing it from all physical storage devices is both unenforceable

and impractical. Even the most rigorous data protection audits do not

require the erasure of offending data from backup tapes. In general,

the tacit assumption is that information ordered to be removed should

become inaccessible through typical precedented methods of access.

In what follows, we formulate the strongest meaningful definition of

deletion applicable to decentralised storage systems and offer a con-

struction that implements it. Importantly, this approach is purely tech-

nical, focusing on the capabilities and costs of primary actors, rather

than relying on procedural measures that impose obligations on inter-

mediaries to respect the rights of primary actors.

210 CHAPTER 5. PERSISTENCE

The primary actors in this context are the uploaders who wish to share

content by granting read access to a number of parties, called download-

ers. Granting access is defined as providing a canonical reference to the

content, allowing the system to eventually retrieve the complete infor-

mation that is intended to be disclosed. Any party that is privileged to

access this information is able to store, re-code, and potentially dissemi-

nate it. This provides a myriad of ways to make the content accessible

at any later point in time, bypassing any process that would qualify as

deletion or removal of access. There is, by definition, no protection

possible against such adversity. As a consequence, any legally sound

notion of deletion (retrospective revocation of access) is meant to be

interpreted in a narrower sense: the viability to replay the same access

method at a lower cost than the full cost of storing the content.14

Let us now define deletion as a scheme for uploading content with

access revocation, meeting the following requirements:

Specialisation

The uploader is able to choose at the time of publishing a specialised

construct15 allowing retrospective revocation of access.
Sovereignty

The uploader is the sovereign owner of the data and is in sole pos-

session of the means to revoke access from any party that was previ-

ously granted access.16

Security

After the revocation of access, a grantee is unable to access the

14That is, the total storage cost paid for the full size of the content starting from the

time access was revoked until the attempted breach.
15From a user’s perspective, content that is meant to be reliably deleted should be up-

loaded as such. The costs of uploading such content is allowed to be a (small integer)

multiple of the cost of regular, censorship-resistant but non-deletable uploads.
16The uploader’s credentials are necessary to delete their own deletable content.

Deletables must also allow access control, i.e., they are only available to a specific

set of recipients.

CHAPTER 5. PERSISTENCE 211

content using the same reference or any other cue shorter than the

deleted content.17

Note that regularly uploaded content may be forgotten: if nobody pays

for storing it and the content is not accessed frequently, the chunks

constituting it will be garbage collected. However, chunks with expired

postage stamps cannot be regarded as reliably deleted in order to satisfy

the requirements of sovereignty and security.

5.3.2 Construction

The goal of this section is to arrive at a formal construction of a DISC-

based revocable access model. We will restrict our scheme to chunks,

the fundamental fixed-sized storage units of Swarm’s DISC model. The

proposed dream construct implements a deletable content storage and

access model that fulfills the requirements of specialisation, sovereignty,

and security. The use of the word ’dream’ alludes to the somewhat

unexpected finding that such a construct is even possible in the im-

mutable DISC model. On top of this, as customary in Swarm, it serves

as a mnemonic acronym, resolving to the 5 dream attributes expressing

requirements of access control.

D – deniable
The dream key serves as a one-time pad for decryption. Since mul-

tiple content chunks (in fact any arbitrary content) can use the

same dream pad, the key’s association to any content is plausibly

deniable.

R – revocable
Access granted through dream keys is revocable. Revoking access

from all parties, including oneself, is considered as deletion.
E – expirable

The scheme allows for one-time use, i.e., the key can only be re-

trieved once.

17In other words, if the downloader has not stored at least as much information as the

deleted information itself, they will have no way of retrieving it.

212 CHAPTER 5. PERSISTENCE

A – addressable
Access can be granted to a neighbourhood, where only clients oper-

ating a node within a particular an overlay address range are able to

access the content.

M – malleable
The construct is resilient to churn and dynamic changes in network

size; it is reusable across independent grantees and upgradeable.

The scheme is built on top of DISC’s APIs and can be implemented

entirely as a second-layer solution. Despite its rich feature set, the

scheme does not use complex cryptography, but instead leverages the

interplay of various component subsystems.

Assume we have a pseudo-random deterministic function that generates

a longer (e.g., chunk-sized = 4K) sequence c from a key-sized (32 byte)

generator g .18

The central construct called a dream is a chunk-sized one time pad

which acts as a decryption key for the deletable content. The dream

chunk is collectively created by a set of nodes following a network proto-

col. Each node in the sequence of participating peers receives a piece of

data and combines it as input with data from their reserve to produce an

output, which is then sent to the neighbourhood of the next node in the

chain. As long as each node in the chain performs the same calculation

and forwards the same result, the same one-time pad can be generated,

enabling the retrieval and reading of the deletable content.

The insight here is that retrieving a deletable chunk’s references involves

calculations using a set of immutable chunks controlled by the uploader.

The uploader’s ability to change this underlying set holds the key to

providing the necessary mutability required by any notion of deletion.

Let b be the batch ID (a 32-byte hash) of a postage batch owned by U ,

and let Chunks(γ,b, p) stand for all chunks stamped by b at block γ in

18For example, the Keccak sponge function used throughout Ethereum for hashing

does have this capability. Alternatively, the blockcipher encryption using initial

nonce g could be applied to a fixed constant chunk such as all zeros.

CHAPTER 5. PERSISTENCE 213

the bucket designated by the pivot p. Define χ(γ,b, p) as the chunk

stamped by batch b in the bucket designated by p older than γ whose

address is closest (has minimal XOR distance) to pivot p.

χ : Γ×Batches×Segment 7→ Chunks (5.1)

χ(γ,b, p)
def= argmin

c∈Chunks(γ,b,p)
χ(p, ADDRESS(c)) (5.2)

If batch b is underutilised, a bucket designated by p may not contain

any chunks belonging to the batch bucket. As a result, there will not be

a chunk closest to p, rendering the χ function undefined in such cases.

Let us now define the OTP update function ∆(γ,b) for batch ID and

input address p as follows:

∆ : Γ×Batches 7→ Chunks 7→ Chunks (5.3)

∆(γ,b) : Chunks 7→ Chunks (5.4)

∆(γ,b)(c)
def= G[4K](ADDRESS(χ(γ,b,c))) (5.5)

Since uniformity depth of batches is intended to be greater than the

nodes’ storage depth, it is expected that all chunks in a batch bucket

designated with p are present in the reserve of every node within the

neighbourhood designated by p.

However, if Swarm grows and there are nodes whose storage depth is

higher than the uniformity depth of the batch, then the neighbourhood

designated by p may not contain all the chunks in the bucket, thus

compromising the computability of the OTP update function.

Nevertheless, if two conditions are met, namely: 1) the bucket of batch

b designated by p is not empty and 2) the neighbourhoods include one

or more buckets, then the update function is computable by any storer

node within the neighbourhood designated by p.

Since the update function can be applied to its own output, we can

define the dream path as follows:

214 CHAPTER 5. PERSISTENCE

Π(b, g)
def= c0, . . . ,cn ∈ Chunks{n} (5.6)

ci
def=

G[4K](g) if i = 0

∆(b,ci−1) otherwise
(5.7)

The dream path function is a pseudo-random generator that is defined

by finite recursion. A dream is a particular pairing of a generator and

a one time-pad, which serve as the input and output of a dream path.

Given a dream path of length n and grantee overlay address a, along

with a batch b with a uniformity depth of d , the uploader needs to find

the generator g such that the n-th chunk of the dream path falls within

a’s neighbourhood (i.e., PO(a, ADDRESS(cn−1)) ≥ d).

dream(b,n, a) ⊂ Keys×Chunks (5.8)

〈g ,k〉 ∈ dream(b,n, a) (5.9)

⇐⇒ (5.10)

k =Π(b, g)[n]∧ (5.11)

PO(a, Hbmt(k)) ≥ d (5.12)

The uploader is able to construct the dream pad, which also allows

them to calculate k given g . Since H(k) is uniform, the chance of

PO(a,H(k)) ≥ d is 1 in 2d .

Now we can turn to the definition of a dream, which is a network proto-

col based access method that is deniable, revocable, expirable, address-

able, and malleable. In order for downloaders to calculate the dream

pad, they must rely on the network, where each recursive step is cal-

culated by a node in the neighbourhood designated by the respective

input chunk’s address.

In order to guarantee the correct termination, the following criteria must

be fulfilled:

— all buckets of batch b designated by p0, . . . , pn−1 must be non-

empty

CHAPTER 5. PERSISTENCE 215

— the uniformity depth of the batch must remain higher than the

storage depth of nodes in the neighbourhoods designated by

p0, . . . , pn−1.

— the output of each step, produced by a node in the neighbourhood

designated by pi , must be sent to the neighbourhood designated

by pi+1.

— nodes in the neighbourhoods along each hop of the dream path

(designated by p0, . . . , pn−1) must be incentivised to compute the

OTP update and forward the resulting output chunk to the next

neighbourhood.

Let us define a network protocol called dream. Participants in the proto-

col listen to single owner chunks that wrap the input. We assume that

they extract the batch identifier b, and the payload CAC c as parameters

to the OTP update function. They calculate the output pad, wrap it as

a dream chunk, and send it to the network towards the address of the

output chunk. This allows the destination neighbourhood to calculate

the next step. If the protocol is followed up to n steps, then the target

node receives k = c(n) at address a.

We now turn to the construction of dream chunks. Uploader U wishes to

grant downloader D (at overlay address a) revocable access to content

chunk C . U chooses a postage batch b it owns, ensuring that it is not

completely filled. Additionally, U chooses a step-count n and a depth d .

U creates a dream generator 〈g ,k〉 ∈ dream(b,d ,n, a), then calculates

the "ciphertext" C ′ =C ⊻k and uploads it to Swarm, obtaining r = H(C ′)
as parity reference. Now U creates the dream reference as ref (C) =
〈r,b, g 〉 which can be given to the downloader grantee D .19

19So far, references to swarm content included an address (Swarm hash for unen-

crypted content) or an address with a decryption key (for encrypted content). The

dream reference now defines a third type of reference, serialised in four segments

comprising the parity address, the batch ID, the initial generator, and a decryption

key.

216 CHAPTER 5. PERSISTENCE

5.3.3 Correctness, security and privacy

Retrieval

D, in possession of a dream chunk reference as 〈r,b, g 〉 calculated by

U as ref (C), constructs p =G[4K](g), wraps it as a dream chunk, and

sends it to Swarm. When D it receives the dream chunk for b, it extracts

payload k.

D retrieves the parity chunk C ′ using reference r and then decodes

C =C ′⊻k. The retrieval process is trivially correct as long as:

1. The parity chunk C ′ is retrievable via normal retrieval methods.

2. The dream protocol is followed by cooperating nodes.

3. The batch bucket bottom remains unchanged for the neighbour-

hoods along the dream path.

Deletion

We are now turning to access revocation, which is equivalent to deleting

content by revoking all access.

Uploader U had granted D (at address a) access to C through the dream

reference 〈r,b, g 〉. U revokes D’s access by uploading extra chunks to

batch b such that χ changes.

As long as there is at least one honest neighbourhood walked by the

protocol, such that the nearest chunk to pivot p from batch b changes,

downloader D will no longer be able to retrieve content C .

To prove this, first let us assume that there is a bucket designated by

some pi on the dream path such that the χ for the bucket has changed

since the uploader constructed the dream. When the participating

node in the neighbourhood designated by pi calculates the OTP update

function, the result will be completely different and the dream chain

will not terminate.

CHAPTER 5. PERSISTENCE 217

Privacy

The reference does not leak any information about the step-count or

the neighbourhoods involved. Neither are the participants in the pro-

tocol aware of their position in the chain or any details about the other

neighbourhoods, except for the immediate next one to which they are

push-syncing their chunk.

The construction of the dream reference is deniable. Beside our sensitive

content C , let us consider A, any uncontroversial content chunk. When

producing C ′, the owner also produces A′ = A⊻k and uploads it. When

asked about k, producing A makes the denial of other content, including

C , more plausible.

Resolution of attacks

A powerful adversary could potentially infiltrate every neighborhood of

Swarm and archive all information that has ever been uploaded (even

without being able to decipher it). They could also keep logs of what has

been uploaded in what order, which would allow it to serve up deleted

content on demand. But there is a huge price on such indiscriminate

archiving of all Swarm’s content, and that is the only way to reliably

defeat the dream construction.

We now turn to the discussion how to calibrate the step-count in relation

to the security model. Let us assume a network-wide neighbourhood

infiltration rate of 1
2 , meaning that half of the neighbourhoods in the

network is assumed to be malicious and colluding.

When access is revoked, the owner uploads new chunks in each neigh-

bourhood along the dream path. Given a particular dream chain, how-

ever, if even a single neighbourhood on the dream path is honest, they

will respect the newly arrived chunks and divert the dream path, pre-

venting it from terminating with the grantee.

Thus, for a breach of access to happen, all neighbourhoods must be

malicious. In our security model, a neighbourhood is malicious with

uniform and independent probability. For an overall infiltration rate of

218 CHAPTER 5. PERSISTENCE

1 out of k, the chance of all neighbourhoods on a given random dream

path being malicious is k−n . For a security requirement of success rate

of σ "nines", where the error rate is less than 10−σ, we can formulate the

requirement as
1

kn
< 1

10−σ (5.13)

Now, expressing k as 10κ, taking the logarithm of both sides and multi-

plying by −1, we get

n > σ

κ
(5.14)

With one in every 10 neighbourhoods being malicious, the dream path

must have as many hops as the number of nines expressing the success

rate.20

20I.e., with malicious node probability 0.1, a 6-hop-long path will effectively revoke

access with certainty of 99.9999%.

6. DEVELOPER INTERFACE

This chapter approaches the Swarm features introduced in the previous

chapters from the user’s perspective. In 6.1, we discuss the developer

interface for configuring uploads including aspects of postage, pinning,

erasure coding, as well as tracking the progress of chunk propagation

into the network using upload tags. Then we turn to the storage API,

specifically uploading collections, in 6.2. Finally, we provide an overview

of the communication options available in 6.3.

6.1 Configuring and tracking uploads

The upload interface is the cornerstone of Swarm’s functionality, allow-

ing users to easily transfer their data into the network. Section 6.1.1

presents the request headers (or alternatively, query parameters) used

for configuring the upload APIs. In 6.1.2, we introduce upload tags that

allow tracking the upload process through progress bars together with

an estimate of how long it will take for the process to complete. Addi-

tionally, tags also record partial root hashes, enabling the resumption

of interrupted uploads. In 6.1.3, we sketch the scenarios relating to

payment for upload and dispersal into the network, including how users

can purchase and attach stamps to chunks. Finally, 6.1.4 runs through

optional parameters such as encryption, pinning, and erasure codes.

6.1.1 Upload options

The local HTTP proxy offers the bzz URL scheme as a storage API. Re-

quests can specify Swarm-specific options such as:

219

220 CHAPTER 6. DEVELOPER INTERFACE

tag
use this upload tag] generated and returned in response header if

not specified.
stamp

upload using this postage subscription] if not given, the one used

most recently is used.
encryption

encrypt content if set] if set to a 64-byte hex value encoding a 256-bit

integer, then that is used instead of a randomly generated key.
pin

pin chunks] pin all chunks of the upload if set.
parities

apply RS erasure coding] use this number of parities per child batch

for all intermediate chunks

These options can be used as URL query parameters or specified as

headers. The name of the header is obtained prefixing the parameter

name with SWARM-, written in uppercase, e.g., SWARM-PARITIES.

6.1.2 Upload tags and progress bar

When uploading a file or collection, it is useful for the user to know

when the upload is complete, meaning that all newly created chunks

are synced to the network and have arrived at the neighbourhood where

they can be retrieved. At this point, the uploader can "disappear", i.e.

they can quit their client. A publisher can disseminate the root hash and

be assured that the file or collection is retrievable from every node on

Swarm.

To track the progress of an upload, we utilise the push-sync protocol’s

statements of custody receipts for individual chunks. By collecting

and counting these receipts, we can track the ratio of sent chunks and

returned receipts, which provides the data to a progress bar. An upload

tag is an object that represents an upload and tracks its progress by

counting how many chunks have reached a particular state. The states

are:

CHAPTER 6. DEVELOPER INTERFACE 221

split

Number of chunks split; count chunk instances.

stored
Number of chunks stored locally; count chunk instances.

seen

Count of chunks previously stored (duplicates).

sent
Number of distinct chunks sent with push-sync.

synced

Number of distinct chunks for which the statement of custody ar-

rived.

With the help of these counts, it is possible to monitor the progress of

1) chunking 2) storing 3) push-syncing, and 4) receipts. If the upload

tag is not specified in the header, a random tag will be generated and

returned as a response header once the file is fully chunked. In order to

monitor the progress of chunking and storing during the upload, the

tag needs to be created beforehand and supplied in the request header.

Thus, the tag can be queried concurrently while the uploaded content is

being processed.

Known vs. unknown file sizes

If the file size is known, it is possible to calculate the total number

of chunks that will be generated. This allows for meaningful progress

tracking of both chunking and storage from the beginning, in proportion

to the total number of chunks.

However, if the size and total number of chunks split are not known

prior to the upload, the progress of chunk splitting is undefined. After

the chunker has finished splitting the file, the total count can be set to

the split count. From that point on, a percentage progress and estimated

time of arrival (ETA) are available for the rest of the counts.

Note that if the upload also includes a manifest, the total count will only

serve as an estimation until it is set to the split count. This estimation

converges to the correct value as the size of the file increases during the

upload process.

222 CHAPTER 6. DEVELOPER INTERFACE

Duplicate chunks

Duplicate chunks refer to chunks that occur multiple times within an

upload or across different uploads. In order to have a locally verifiable

definition, we define a chunk as a duplicate (or seen) if and only if it

already exists in the local store. Since chunks enter the local store via

upload and are push-synced, there is no need for seen chunks to be

push-synced again.

In other words, only newly stored chunks need to be counted when

assessing the estimated time of syncing an upload. If we want to track

progress based on sent and synced counts, they must reflect the com-

pleteness of stored distinct chunks in proportion to the overall progress.

Tags API

The HTTP server’s bzz URL scheme provides the tags endpoint for the

tags API. This endpoint supports the creation, listing, and viewing of

individual tags. Most importantly, it offers an option to track the changes

of a tag in real time using HTTP streams.

6.1.3 Postage

To impose a cost on uploads and efficiently allocate storage resources

in the network, all uploads must be paid for. This concept may be

unfamiliar in the context of the web, so a novel user experience needs

to be developed. The closest and most relatable metaphor is that of a

subscription.

Postage subscriptions

The user can create a subscription for a specific duration and storage

capacity (e.g. 1 month for 100 megabytes) and make the corresponding

payment based on the price provided by the client software (similar to

how transaction fees are determined for the blockchain). Price estimates

can be obtained from the postage lottery contract. Subscriptions are

named, but these names are only meaningful locally. The API will offer

CHAPTER 6. DEVELOPER INTERFACE 223

a few default options for the chosen storage period, on a logarithmic

scale, e.g.:

minimal (a few hours)

Useful for immediate delivery of pss messages or single owner

chunks that are part of ephemeral chat or other temporary files.
temporary (week)

Files or mailboxed messages that are not meant to be stored for

long, but rather picked up by third parties asynchronously.
long term (year)

The default option for long-term storage.
forever (10 years)

Important content that should not be lost/forgotten; intended to

survive the network’s growth and subsequent increase of batch

depth even if the uploader remains completely offline.

When uploading files, the user can indicate which subscription they

would like to use by specifying the value of the stamp upload parameter.

If no subscription is specified, the most recent one is used as the default.

If the size of the upload is known, the user can receive a warning if it

exceeds the available postage capacity.

Postage reuse strategies

As mentioned in 3.3, encryption can be used to mine chunks to make

sure they align with the collision slots of postage batches. This strategy

of mining chunks into batches makes sense for users who only want

to upload a particular file/collection for a particular period or want to

keep the option open to change the storage period for the file/collection

independently of other uploads.

The alternative is to prepay a large set of postage batches and maintain

a fixed number of them open for every period. This ensures that there

is always an available collision slot in one of the batches for any chunk.

The postage batches are ordered based on the time of purchase, and

when attaching a stamp to a chunk, the first batch with a free slot for

the chunk address is utilised. This profitable strategy is used most

effectively by power users including insurers who can afford to tie up

224 CHAPTER 6. DEVELOPER INTERFACE

liquidity for longer time periods. The choice of the preferred strategy

must be specified when creating a subscription.

The postage subscription API

In order to manage subscriptions, the bzz URL-scheme provides the

stamp endpoint for the postage API. This API allows users to perform

various actions such as creating postage subscriptions, listing them,

viewing details, topping them up, or draining and expiring them.

When checking their subscription(s), the user is informed how much

data has already been uploaded to that subscription and how long it can

be stored given the current price (e.g. 88/100 megabytes for 23 days). If

the estimated storage period is low, indicating the risk of the files using

the subscription being garbage collected, users are encouraged to top

up their subscription to ensure the content remains protected.

6.1.4 Additional upload features

Additional features such as swap costs, encryption, pinning, and erasure

coding can be specified during upload by using relevant request headers.

Swap costs

Uploading content incurs swap costs, which are associated with the

push-sync protocol and reflected in the SWAP accounting system (3.2.1).

When the balance tilts beyond the effective payment threshold on a

peer connection, a cheque is issued and sent to the peer. If, however,

the checkbook contract does not exist or lacks sufficient funds to cover

the outstanding debt, the peer connection is blocked. This may lead to

unsaturated Kademlia and during that time, the node is considered a

light node. While the download process can still continue with poten-

tially fewer peers, the average cost of retrieving a chunk may be higher

since some chunks may need to be sent to peers that are not closer to

the request address than the node itself.

To provide transparency to the user, information such as the average

number of peers, average swap balance, and the number of unavailable

CHAPTER 6. DEVELOPER INTERFACE 225

peer connections due to insufficient funds can be accessed through the

SWAP API.

Encryption

Encrypted upload can be enabled by setting the option encryption to

a non-zero value. If the value provided is a hexadecimal representation

of a 32-byte seed, that seed is used for encryption. Since encryption and

decryption are handled by Swarm itself, it must only be used in situa-

tions where the transport between the HTTP client and Swarm’s proxy

server can be guaranteed to be private. As such, it should not be used

on public gateways, but rather through local Swarm nodes or private

environments with well-configured TLS and self-signed certificates to

ensure the necessary privacy and security.

Pinning

When uploading content, users have the option to specify if they want

the content to be pinned locally by setting the pin upload option to a

non-zero value. Beyond this, the local HTTP server’s bzz URL scheme

provides the pin endpoint for the pinning API, which allows users to

manage pinned content. By making a GET request on the pinning end-

point, users can retrieve a list of pinned files or connections. The API

also accepts PUT and DELETE requests on a hash (or domain name that

resolves to a hash) to pin and unpin content, respectively.

When a file or collection is pinned, it is supposed to be retrieved and

stored. Pinning triggers the traversal of the hash tree and increments the

reference count on each chunk. If a chunk is found to be missing locally,

it will be retrieved. After pinning, the root hash is saved locally for future

access. Unpinning triggers the traversal of the hash and decrements the

reference count of each chunk. If a chunk is missing locally, it is ignored

and a warning is included in the response. After unpinning, the hash is

removed from the list of pinned hashes.

226 CHAPTER 6. DEVELOPER INTERFACE

Erasure coding

Erasure coding (see 5.1) can be enabled during an upload by setting the

parities upload option to specify the number of parity chunks among

the children of each intermediate chunk. It is worth noting that erasure

coded files cannot be retrieved using the default Swarm downloader.

Therefore, when using erasure coding, it is important to indicate the

erasure coding settings in the encapsulating manifest entry by setting

the rs attribute to the number of parity chunks.

6.2 Storage

In this section, we will introduce the storage API provided through the

bzz family of URL schemes by Swarm’s local HTTP proxy.

6.2.1 Uploading files

The bzz scheme allows for uploading files directly through the file API.

The file is expected to be encoded in the request body or in a multipart

form. All the query paramaters (or corresponding headers) introduced

in 6.1.1 can be used with this scheme. The POST request will chunk and

upload the file. A manifest entry is created, which includes the reference

to the uploaded content and reflects the configuration of the upload,

e.g. the number of parities per batch for erasure codes specified by the

rs attribute. The manifest entry is provided as a response. The upload

tag. which allows us to monitor the status of the upload, will contain the

reference to the uploaded file as well as the manifest entry.

Appending to existing files

The PUT request is used to append data to pre-existing data in the swarm

and requires the URL to point to the specific file. If the file is directly ref-

erenced, the settings, such as the number of parities for erasure coding,

are taken from the upload headers. Otherwise, if the file is not directly

referenced, the settings obtained from the enclosing manifest entry will

CHAPTER 6. DEVELOPER INTERFACE 227

be used. The response follows the same format as in the case of a POST
request.

Resuming incomplete uploads

As a special case, append is used when resuming uploads after a crash

or user-initiated abort. In order to facilitate this, it is necessary to track

partial uploads by periodically recording root hashes on the upload

tag. When the specified upload tag in the header is not complete, it is

assumed that the request is intended to resume the same upload. The

last recorded root hash in the tag is used as an append target: the right

edge of the existing file is retrieved to initialise the state of the chunker.

The file sent with the request is read from where the partial upload

ended, with the offset set to the span of the root chunk recorded on the

tag.

6.2.2 Collections and manifests

As described in Section 4.1.2, a manifest can represent a generic index

that maps string paths to entries. This means that a manifest can serve

as the routing table for a virtual website, the directory tree of a file

collection, or even as a key–value store.

Manifest entries vs.singleton manifests

Manifest entries are essential not only for collections, but also for single

files as they contain key information about the file, including content

type and erasure coding details necessary for correct retrieval. A man-

ifest with a single entry for a file located on the empty path is called a

singleton manifest. In this case, the manifest contains no additional

information beyond the entry itself.

To facilitate the storage of collections, the HTTP server provides the

bzz URL scheme, which implements the collection storage API. When

a single file is uploaded via a POST request using the bzz scheme, a

manifest entry is created and stored, and the response contains the

reference to the created entry.

228 CHAPTER 6. DEVELOPER INTERFACE

Uploading and updating collections

The bzz URL scheme provides an API that supports uploading and up-

dating collections. When utilising the POST and PUT requests with a

multipart payload containing a tar stream, the directory tree structure

encoded within the tar stream is translated into a manifest. Simultane-

ously, the files within the collection are chunked and uploaded, with

their respective Swarm references included in the corresponding mani-

fest entries. The POST request is used to upload the resulting manifest,

and the response includes the Swarm reference associated with it. The

PUT request requires the request URL to reference an existing manifest

that will be updated with the contents of the tar stream. The update

process involves merging the new paths with the paths of the existing

manifest. If there are identical paths, the entry coming from the upload

will replace the corresponding entry in the existing manifest.

The API enables inserting a path into a manifest, updating a path in a

manifest (PUT), and deleting (DELETE) a path from a manifest. In case of

a PUT request, a file is expected in the request body, which is uploaded

and its manifest entry is inserted at the path present in the URL. If the

path already exists in the manifest, the existing entry is replaced with

the entry generated with the upload, effectively performing an update.

If the path is new, the upload inserts a new entry into the manifest.

The collection API supports the same headers as the file upload end-

point, including those that configure postage subscription, tags, encryp-

tion, erasure coding, and pinning.

Updating manifests directly

Manipulating manifests is also supported directly: the bzz URL scheme

manifest endpoint supports the PUT and the DELETE methods and be-

haves similarly to the collection endpoint. However, unlike the collec-

tion endpoint, the manifest endpoint does not handle the files refer-

enced in the manifest entries. When using a manifest endpoint, the

URL path is expected to reference a manifest with a path p. For PUT, the

request body should contain a manifest entry which will be placed at

CHAPTER 6. DEVELOPER INTERFACE 229

path p. The chunks needed for the new manifest are created and stored,

and the root hash of the new manifest is returned in the response. The

DELETE method expects empty request body and removes the entry on

the path from the manifest: i.e., it creates a new manifest where the

referenced path in the URL is no longer present.

The POST request made directly on the manifest API endpoint installs

a manifest entry. Practically, calling a manifest POST on the output of a

file POST is equivalent to making a POST request on the generic storage

endpoint.

Given manifest references a and b , sending a POST request on manifest
/merge/<a>/ merges b onto a (merge with giving preference to

b in case of conflicts), creates and stores all the chunks constituting

the merged manifest, and the root reference of the merged manifest is

returned as a response.

In case the URL path references a manifest, another manifest can be

included in the request body, which is then merged into the referenced

manifest. In case of conflicts, the one that is uploaded wins.

6.2.3 Access control

Access control, as described in 4.2, is facilitated through the bzz URL

scheme, which provides the access API endpoint. This API offers a

convenient way for users to apply access control to files, collections, or

sites, as well as manage grantees.

If the URL path references a collection manifest, then a POST request

with access control (AC) settings sent as a JSON-encoded request body

will encrypt the manifest reference and wrap it with the submitted AC

settings in a so-called root access manifest. This manifest is then up-

loaded, and the unencrypted reference to it is returned as the response

body.

If the URL path references a root access manifest and the access control

settings specify an ACT, then the ACT can be created or updated using

POST, PUT, and DELETE requests. All requests expect a JSON array of

grantee public keys or URLs in the request body. If a grantee is refer-

230 CHAPTER 6. DEVELOPER INTERFACE

enced by a URL, the resolver is used to extract the owner’s public key

through ENS.

The POST request will create the ACT with the list of grantees. PUT will

update an existing ACT by merging the grantees specified in the request

body. DELETE removes all the grantees listed in the request body. The

new ACT root hash is then updated in the root access manifest, which is

uploaded, and its Swarm address is returned in the response.

6.2.4 Download

Downloading is supported by the bzz URL scheme. This URL scheme

assumes that the domain part of the URL is referencing a manifest as

the entry point.

It is worth noting that the processes involved in downloading are the

same, even if a file is only partially retrieved. As shown in 4.1.1, random

access to a file at an arbitrary offset is supported at the lowest level.

Therefore, GET requests on a URL pointing to a file can include range

queries in the header. These range queries will trigger the retrieval of

only the necessary chunks of the file that cover the desired range.

Retrieval costs

Downloading files in Swarm incurs costs in terms of SWAP accounting

(as described in Section 3.2.1). These costs are associated with retriev-

ing chunks from the network. When a node’s balance tilts beyond the

effective payment threshold on a peer connection, a cheque is issued

and sent to that peer. If, however, the checkbook contract does not

exist or lacks sufficient funds to cover the outstanding debt, the peer

connection is blocked. This may lead to non-saturated Kademlia and

during that time, the node will count as a light node. The download can

continue potentially using a smaller number of peers, however, since

some chunks will need to be sent to peers that are not closer to the

request address than the node itself, the average cost of retrieving a

chunk will be higher.

CHAPTER 6. DEVELOPER INTERFACE 231

To provide transparency to the user, it is valuable to display the average

number of retrieve requests, the average swap balance, and the number

of peer connections not unavailable due to insufficient funds. This

information can be accessed through the SWAP API, which is available

on the swap endpoint of the bzz URL scheme.

Domain Name Resolution

The domain part of the URL can be a human-readable domain or sub-

domain with a top level domain (TLD) extension. Depending on the

TLD, various name resolvers can be invoked. The TLD eth is linked to

the Ethereum Name Service contract on the Ethereum main chain. If

you register a Swarm hash to an ENS domain, Swarm is able to resolve

that by calling the ENS contract as a nameserver would.

Authentication for access control

If the resolved domain references a root access manifest, the retrieved

URL is subject to access control (see 4.2). Depending on the credentials

used, the user may be prompted for a password or a pair of keys (key 1

for lookup and key 2 for decrypting the access key). The Diffie–Hellmann

shared secret is hashed with 0x00 to derive the lookup key and with 0x01

to derive the access key decryption key. The Swarm address of the ACT

manifest root chunk is obtained from the root access manifest. The

lookup key is then appended to the ACT address, resulting in a URL used

to retrieve the manifest entry. The reference within this entry is then

decrypted using the access key decryption key, and the resulting access

key is used to decrypt the original encrypted reference stored in the root

access manifest.

Next the manifest entry corresponding to the path of the URL is retrieved.

The retrieval process considers the following attributes:

rs
structure with attributes needed to use RS erasure coding for re-

trieval, e.g. the number of parity chunks required.

232 CHAPTER 6. DEVELOPER INTERFACE

sw3
structure with attributes needed for litigation, which includes chal-

lenging insurer regarding a missing chunk.

If the rs attribute is provided, the user can set the prefetching strategy

for redundancy decoding (see 5.1.4).

The default strategy choice is race, if the user wants to prioritise saving

on downloads, then the fallback strategy can be enforced by setting the

header SWARM-RS-STRATEGY=fallback. Alternatively, the RS strategy

can be completely disabled by setting SWARM-RS-STRATEGY=disabled.

The number of parities for an erasure coded batch is taken from the rs
attribute in the enclosing manifest. However, this can be overridden

with the header SWARM-RS-PARITIES.

Missing chunks

If a requested chunk is found to be missing, we can fall back on the

missing chunk notification protocol (see 5.2). The reference to the root

of the data structure representing the set of recovery targets can be

found at the latest update of the recovery feed.

When a chunk request times out, the client can initiate the creation of

a recovery message using the set of pinner hosts. Once the recovery

message is created, it is sent to the host. If this request also times out,

the next recovery chunk is tried using a different pinner host node. This

process is repeated until the recovery chunk is successfully retrieved or

all the pinners and insurers have been exhausted.

6.3 Communication

Somewhat surprisingly, Swarm’s network layer can serve as a highly

efficient communication platform with robust privacy features. This

section aims to showcase how a small set of primitives can be utilised as

the fundamental building blocks for a comprehensive communication

infrastructure. The capabilities cover the full range of communication

modalities including real-time anonymous chat, sending and receiving

messages from previously unconnected and potentially anonymous

CHAPTER 6. DEVELOPER INTERFACE 233

senders, mailboxing for asynchronous delivery, long-term notifications,

and publish/subscribe interfaces.

Swarm core offers the lowest-level entry-points for communication-

related functionality:

— The pss module provides an API for sending and receiving Trojan

chunks

— The bzz module offers a way to upload single owner chunks. The

retrieval of single owner chunks only requires the functionality

provided by the storage APIs, without any additional requirements

Since Trojan message handling has distinct characteristics from storage

operations, Swarm introduces its own URL-scheme called pss. The

pss scheme provides an API specifically for sending messages. When

sending a POST request, the URL is interpreted as referencing the X3DH

pre-key bundle feed update chunk. This chunk contains the necessary

public key for encryption as well as the destination targets. One of the

destination targets should match the address for the Trojan message

(see 4.4.1).

Destination targets are represented as the buzz serialisation of the target

prefixes as a file. The URL path points to this file or is a top-level domain.

The topic is specified as a query parameter and the message as the

request body.

Receiving messages is supported only by registering topic handlers inter-

nally. In the context of the API, this typically involves push notifications

via web-sockets.

234 CHAPTER 6. DEVELOPER INTERFACE

BIBLIOGRAPHY

Alwen, J., Coretti, S., and Dodis, Y. (2019). The double ratchet: Secu-

rity notions, proofs, and modularization for the signal protocol. In

Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 129–158. Springer.

Balaji, S., Krishnan, M. N., Vajha, M., Ramkumar, V., Sasidharan, B.,

and Kumar, P. V. (2018). Erasure coding for distributed storage: An

overview. Science China Information Sciences, 61:1–45.

Baumgart, I. and Mies, S. (2007). S/kademlia: A practicable approach

towards secure key-based routing. In Parallel and Distributed Systems,

2007 International Conference on, volume 2, pages 1–8. IEEE.

BitTorrent Foundation (2019). Bittorrent white paper.

Bloemer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., and Zucker-

man, D. (1995). An xor-based erasure-resilient coding scheme. Tech-

nical report, International Computer Science Institute. Technical

Report TR-95-048.

Carlson, N. (2010). Well, these new zuckerberg ims won’t help facebook’s

privacy problems.

Cohen, B. (2003). Incentives build robustness in bittorrent. In Workshop

on Economics of Peer-to-Peer systems, volume 6, pages 68–72.

Crosby, S. A. and Wallach, D. S. (2007). An analysis of bittorrent’s two

Kademlia-based dhts. Technical report, Citeseer.

235

236 BIBLIOGRAPHY

Economist (2020a). A deluge of data is giving rise to a new economy.

[Online; accessed 26. Feb. 2020].

Economist (2020b). Governments are erecting borders for data. [Online;

accessed 27. Feb. 2020].

Economist (2020c). Who will benefit most from the data economy?

[Online; accessed 27. Feb. 2020].

Estrada-Galinanes, V., Miller, E., Felber, P., and Pâris, J.-F. (2018). Al-

pha entanglement codes: practical erasure codes to archive data in

unreliable environments. In 2018 48th Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN), pages

183–194. IEEE.

Estrada-Galinanes, V., Nygaard, R., Tron, V., Saramago, R., Jehl, L., and

Meling, H. (2019). Building a disaster-resilient storage layer for next

generation networks: The role of redundancy. IEICE Technical Report;

IEICE Tech. Rep., 119(221):53–58.

European Commission (2020a). European data strategy. [Online; ac-

cessed 3. Mar. 2020].

European Commission (2020b). On Artificial Intelligence - A European

approach to excellence and trust. Technical report, European Com-

mission.

Ferrante, M. D. (2017). Ethereum payment channel in 50 lines of code.

Technical report, Medium blog post.

Filecoin (2014). Filecoin: a cryptocurrency operated file storage network.

Ghosh, M., Richardson, M., Ford, B., and Jansen, R. (2014). A TorPath

to TorCoin: Proof-of-bandwidth altcoins for compensating relays.

Technical report, petsymposium.

Harari, Y. (2020). Yuval Harari’s blistering warning to Davos. [Online;

accessed 2. Mar. 2020].

BIBLIOGRAPHY 237

Heep, B. (2010). R/kademlia: Recursive and topology-aware overlay

routing. In Telecommunication Networks and Applications Conference

(ATNAC), 2010 Australasian, pages 102–107. IEEE.

Hughes, E. (1993). A Cypherpunk’s Manifesto. [Online; accessed 7. Aug.

2020].

IPFS (2014). Interplanetary file system.

Jansen, R., Miller, A., Syverson, P., and Ford, B. (2014). From onions to

shallots: Rewarding tor relays with TEARS. Technical report, DTIC

Document.

Kwon, A., Lazar, D., Devadas, S., and Ford, B. (2016). Riffle: An efficient

communication system with strong anonymity. In Proceedings on

Privacy Enhancing Technologies 2016, pages 1–20. de Gruyter.

Lee, K.-F. (2018). AI Superpowers: China, Silicon Valley, and the New

World Order. Houghton Mifflin Harcourt.

Li, J. and Li, B. (2013). Erasure coding for cloud storage systems: A survey.

Tsinghua Science and Technology, 18(3):259–272.

Locher, T., Moore, P., Schmid, S., and Wattenhofer, R. (2006). Free riding

in bittorrent is cheap.

Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., and Lim, S. (2005). A

survey and comparison of peer-to-peer overlay network schemes.

IEEE Communications Surveys & Tutorials, 7(2):72–93.

Marlinspike, M. and Perrin, T. (2016). The x3dh key agreement protocol.

Open Whisper Systems.

Maymounkov, P. and Mazieres, D. (2002). Kademlia: A peer-to-peer

information system based on the xor metric. In Peer-to-Peer Systems,

pages 53–65. Springer.

McDonald, J. (2017). Building ethereum payment channels. Technical

report, Medium blog post.

238 BIBLIOGRAPHY

Merkle, R. C. (1980). Protocols for public key cryptosystems. In Proc.

1980 Symposium on Security and Privacy, IEEE Computer Society, page

122. IEEE.

Miller, A., Juels, A., Shi, E., Parno, B., and Katz, J. (2014). Permacoin: Re-

purposing bitcoin work for data preservation. In Security and Privacy

(SP), 2014 IEEE Symposium on, pages 475–490. IEEE.

Percival, C. (2009). Stronger key derivation via sequential memory-hard

functions.

Perrin, T. and Marlinspike, M. (2016). The double ratchet algorithm.

GitHub wiki.

Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., and Venkatara-

mani, A. (2007). Do incentives build robustness in bittorrent. In

Proceedings of NSDI; 4th USENIX Symposium on Networked Systems

Design and Implementation.

Plank, J. S., Luo, J., Schuman, C. D., Xu, L., Wilcox-O’Hearn, Z., et al.

(2009). A performance evaluation and examination of open-source

erasure coding libraries for storage. In FAST, volume 9, pages 253–265.

Plank, J. S. and Xu, L. (2006). Optimizing Cauchy Reed-Solomon codes

for fault-tolerant network storage applications. In Network Com-

puting and Applications, 2006. NCA 2006. Fifth IEEE International

Symposium on, pages 173–180. IEEE.

Poon, J. and Dryja, T. (2015). The bitcoin lightning network: Scalable off-

chain instant payments. Technical report, https://lightning.network.

Pouwelse, J., Garbacki, P., Epema, D., and Sips, H. (2005). The bittorrent

p2p file-sharing system: Measurements and analysis. In Castro, M.

and van Renesse, R., editors, Peer-to-Peer Systems IV, pages 205–216,

Berlin, Heidelberg. Springer Berlin Heidelberg.

Schneier, B. (2019). Data Is a Toxic Asset - Schneier on Security. [Online;

accessed 6. Aug. 2020].

BIBLIOGRAPHY 239

Tremback, J. and Hess, Z. (2015). Universal payment channels. Technical

report, ?

Trón, V., Fischer, Á., A, D. N., Felföldi, Z., and Johnson, N. (2016). swap,

swear and swindle: incentive system for swarm. Technical report,

Ethersphere. Ethersphere Orange Papers 1.

Trón, V., Fischer, Á., and Nagy, D. A. (2019a). Generalised swap swear

and swindle games. Technical report, Ethersphere. draft.

Trón, V., Fischer, Á., and Nagy, D. A. (2019b). Swarm: a decentralised

peer-to-peer network for messaging andstorage. Technical report,

Ethersphere. draft.

Tron Foundation (2019). Tron: Advanced decentralised blockchain

platform.

Vorick, D. and Champine, L. (2014). Sia: Simple decentralized storage.

Technical report, Sia.

Weatherspoon, H. and Kubiatowicz, J. D. (2002). Erasure coding vs.

replication: A quantitative comparison. In Peer-to-Peer Systems: First

InternationalWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7–8,

2002 Revised Papers 1, pages 328–337. Springer.

ZeroNet community (2019). Zeronet documentation.

240 BIBLIOGRAPHY

Part III

Indexes

241

GLOSSARY

access control
The selective restriction of access to read a document or collection

in Swarm.

access control trie
A tree-like data structure containing access keys and other access

information.
access key

A symmetric key used for encryption of reference to encrypted

data.
access key decryption key

The key granted by the publisher to a party in a multi-party selec-

tive access scenario, used to decrypt the global access key.

accessible chunk
A chunk that is accessible by routing a message between the re-

quester and the node closest to the chunk.
addressed envelope

A construct where the address of the single owner chunk is created

before the chunk content is associated with it.
anonymous retrieval

The act of retrieving a chunk without disclosing the identity of the

requestor node.
anonymous uploads

Uploading data while keeping the uploader’s identity hidden,

leveraging the forwarding Kademlia routing.

243

244 Glossary

area of responsibility

The area of the overlay address space in the node’s neighbourhood.

A storer node is responsible for chunks belonging to this area.
authoritative version history

A secure audit trail of the revisions of a mutable resource.

backwarding

A method of delivering a response to a forwarded request, where

the response simply follows the request route back to the origina-

tor.
balanced binary tree

A binary tree in which subtrees of every node differ in height by at

most 1.

batch
A group of chunks referenced under an intermediate node.

batch bins
Equivalence classes of chunks from the point of view of batch

expiry, with the same proximity order and same batch.
batch depth

The postage batch size specified as a power of 2.

batch size
The amount of chunks that can be stamped with a postage batch.

See also issuance volume.

bin ID
A sequential counter per PO bin acting as an index of locally stored

chunks on a node.
binary Merkle tree

A binary tree in which each leaf node is labelled with the crypto-

graphic hash of a data block, and each non-leaf node is labelled

with a hash of the labels of its child nodes.
binary Merkle tree chunk

The canonical content addressed chunk in Swarm.
binary Merkle tree hash

The method used for calculating the address of binary Merkle tree

chunks.

Glossary 245

BitTorrent
A communication protocol for peer-to-peer file sharing used to

distribute data and electronic files over the Internet.

blockchain
An immutable list of blocks, where each subsequent block con-

tains a cryptographic hash of the preceding block.

bzz network ID
The unique identifier assigned to the Swarm network.

challenge

User can submit a challenge when they attempt to retrieve insured

content and fail to find a chunk.
cheque

An off-chain payment method where the issuer signs a cheque

specifying a beneficiary, a date, and an amount, which is given to

the recipient as a token of promise to pay at a later date.
chequebook contract

Smart contract that allows the beneficiary to choose when pay-

ments are to be processed.

chunk
A fixed-sized data blob, the basic unit of storage in Swarm’s DISC

keyed by its address. Chunks can either be content addressed or

single owner.
chunk span

The length of data subsumed under an intermediate chunk.
chunk synchronisation

The process in which a peer locally stores chunks received from

an upstream peer.

chunk value
The value assigned to a chunk based on the price of the postage

batch it is stamped with. It determines the order of chunks when

a node prioritises for garbage collection.
claim phase

A phase in each round of the redistribution game when the winner

submits a claim.

246 Glossary

collect-and-run attack
Situation where a party would collect the funds for some promised

work, but not actually do the work.

collective information
Data generated through collective effort, such as public forum

discussions, reviews, votes, polls, and wikis.

collision slot
The collection of maximum length prefixes that any two chunks

stamped with a postage batch are allowed to share. Each stamped

chunk occupies a collision slot.
commit phase

A phase in the redistribution round of the Schelling game.

committed stake
The amount of stake the stakers commit to in the staking contract.

content addressed chunk
A chunk is content addressed when its address is determined by

the chunk content itself. The address usually represents a finger-

print or digest of the data using some hash function. In Swarm, the

default content addressed chunk uses the Binary Merkle Tree hash

algorithm with Keccak256 base hash to determine its address.

data silo
An isolated collection of information within an organisation that is

not accessible by other parts of the organisation. In more general

terms, it refers to the large datasets that organisations often keep

exclusively for their own use.
data slavery

Refers to a situation where individuals lack control over their per-

sonal data and do not receive sufficient remuneration for its com-

mercial use by companies.

decentralised network
A network architecture designed without any central nodes that

other nodes would need to depend on.
deep bin

A bin that is relatively close to a particular node and hence con-

tains a smaller part of the address space.

Glossary 247

denial of service (DoS)
Denying of access to services by flooding those services with ille-

gitimate requests.
destination target

A bit sequence that represents a neighbourhood in the address

space. In the context of chunk mining, it refers to the prefix that

the mined address should match.
devp2p

A set of network protocols forming the Ethereum peer-to-peer

network. Implemented as a set of programming libraries with the

same name.
direct delivery

Chunk delivery occurring in a single step via a lower-level network

protocol.
direct notification from publisher

The process where a recipient is directly notified of a feed update

by the publisher or other parties known to have it.

disconnect threshold
The debt threshold between peers that determines when a peer in

debt will be disconnected.

distributed hash table
A distributed system that provides an efficient lookup service,

enabling any participating node to retrieve the value associated

with a given key.

distributed immutable store for chunks
Swarm’s version of a distributed hash table for storing files. Swarm

does not maintain a list of file locations, instead it actually stores

pieces of the file directly on the node.
distributed storage

A network of storage where information is stored on multiple

nodes, possibly in replicated fashion.
distributed web application

A client side web application that leverages Web 3.0 technologies

(e.g. Ethereum network) and does not rely on any central server.

248 Glossary

double ratchet
An industry-standard key management solution providing for-

ward secrecy, backward secrecy, immediate decryption, and re-

silience to message loss.
duplicate chunk

We define a chunk as a duplicate (or seen) if and only if it is already

found in the local store.

effective demand
The total number of chunks that have been successfully uploaded.

elliptic curve Diffie-Hellman

A key agreement protocol that allows two parties, each possessing

an elliptic-curve public–private key pair, to establish a shared

secret over an insecure channel.
encrypted reference

Symmetric encryption of a Swarm reference to access controlled

content.

enode URL scheme
A URL scheme used to describe an Ethereum node.

entanglement code

An error correction code optimized for bandwidth of repair.
epoch

A specific time period with a defined length, starting from a par-

ticular point in time.
epoch base time

The specific point in time when an epoch starts.
epoch grid

The arrangement of epochs where rows (referred to as levels) rep-

resent alternative partitioning of time into various disjoint epochs

of the same length.
epoch reference

A combination of an epoch base time and level used to identify a

specific epoch.
epoch-based feeds

Special feeds that allow feeds with sporadic updates to be search-

able.

Glossary 249

epoch-based indexing

Indexing based on the epoch in which an action took place.

erasure code
An error correction coding scheme which optimally inflates data

of n chunks with k parities to allow any n out of the n +k chunks

to recover the original data.

Ethereum Name Service
A system analogous to the DNS of the old web, translating human-

readable names into system-specific identifiers, i.e. references in

the case of Swarm.

Ethereum Virtual Machine (EVM)
A Turing-complete byte code interpreter responsible for calculat-

ing state changes by executing the instructions of smart contracts.
eventual consistency

The guarantee that all chunks are redundantly retrievable once

the neighbourhood peers have synchronised their content.
extended triple Diffie–Hellmann key exchange

The standard method used to establish the initial parameters of a

double ratchet key-chain.

FAANG
Facebook, Apple, Amazon, Netflix, and Google.

fair data economy

An economy of processing data characterised by fair compensa-

tion of all parties involved in its creation or enrichment.
feed aggregation

The process of combining multiple sporadic feeds into a single

periodic one.

feed index
A component of the identifier for the feed chunk, used for identifi-

cation and retrieval purposes.
feed topic

A component of the identifier for the feed chunk, representing the

topic or subject of the feed.

250 Glossary

feeds
Data structures based on single owner chunks, suitable for repre-

senting a variety of sequential data, such as versioning updates

of a mutable resource or indexing messages for real-time data

exchange. Feeds offer a persisted pull messaging system.

Special kind of feeds, updates of which are meant to be accumu-

lated or added to earlier ones, e.g. parts of a video stream.

Feeds that publish updates at regularly recurring intervals.

Feeds where the update frequencies may vary within the temporal

range of real-time human interaction.

Special kind of feeds representing a series of content connected by

a common thread, theme, or author, such as social media status

updates, a person’s blog posts, or blocks of a blockchain.

Feeds with irregular asynchronicities, i.e. updates can occur with

unpredictable gaps.
forwarding Kademlia

A recursive flavour of Kademlia routing that involves message

relay.
forwarding lag

The time it takes for healthy nodes to forward messages.
freeriding

The practice of benefiting from or taking advantage of shared or

limited resources without providing appropriate compensation or

contributing to their upkeep or sustainability.
future secrecy

A feature of specific key agreement protocols that gives assurances

that all other session keys will not be compromised, even if one or

more session keys are obtained by an attacker.

garbage collection

The selective purging process of removing unnecessary chunks

from a node’s local storage.
garbage collection strategy

The process that determines which chunks are selected for re-

moval during garbage collection.

Glossary 251

global balance

The amount of funds deposited in the chequebook to serve as

collateral for the cheques.
granted access

A type of selective access to encrypted content that requires root

access as well as access credentials comprising either an autho-

rized private key or passphrase.
guaranteed delivery

Guaranteed in the sense that delivery failures due to network

problems will result in direct error responses.

hive protocol

The protocol used by nodes joining the network to discover their

peers.
honest peers

The set of applicants who agree with the selected truth in the

round of the Schelling game.

immutable chunk store
A storage system where no replace or update operation is available

on chunks.
incentive strategy

A strategy that utilises rewards and penalties to encourage desired

behaviour.
inclusion proofs

A proof that a string is a substring of another string, for instance

verifying that a string is included in a chunk.
indexing scheme

Defines the way the addresses of subsequent updates of a feed are

calculated. The choice of indexing scheme depends on the type

and usage characteristics (update frequency) of the feed.

insider
A peer inside the Swarm network that already has some funds.

InterPlanetary File System

A protocol and peer-to-peer network for storing and sharing data

in a distributed file system.

252 Glossary

issuance volume
The amount of chunks that can be stamped with a postage batch.

See also batch size.

Kademlia
A network connectivity or routing scheme based on bit prefix

length used in distributed hash tables.
Kademlia connectivity

Connectivity pattern of a node x in forwarding Kademlia where (1)

there is at least one peer in each PO bin 0 <≤ i < d , and (2) no peer

y in the network such that PO(x, y) ≥ d and y is not connected to

x.

Kademlia table
Indexing of peers based on the proximity order of their addresses

relative to the local overlay address.

A Kademlia table in which a single peer is present for each bin (up

to a certain bin).
Kademlia topology

A scale-free network topology that guarantees a path between any

two nodes in O(log (n)) hops.
key derivation function

A function that deterministically produces keys from an initial

seed. It is often used concurrently by parties separately to generate

secure messaging key schemes.

liars
The set of applicants who disagree with the selected truth in the

round of the Schelling game.
libp2p

A framework and suite of protocols for building peer-to-peer net-

work applications.
light node

The concept of light node refers to a special mode of operation ne-

cessitated by poor bandwidth environments, e.g., mobile devices

on low throughput networks or devices allowing only transient or

low-volume storage. Light nodes do not accept incoming connec-

tions.

Glossary 253

litigation

An on-chain process where nodes violating the rules of Swarm

stand to lose their deposit.
load balancing

The process of distributing a set of tasks over a set of nodes to

make the process more efficient.
lookup key

One of the keys involved in the process of allowing selective access

to content for multiple parties.
lookup strategy

A strategy used for following updates to feeds.

manifest entry

Contains a reference to the Swarm root chunk of the representa-

tion of a file and also specifies the media mime type of the file.
maximum syncing latency

The agreed maximum duration of latency for live syncing after a

peer connection starts.
mining chunks

An example of chunk mining is generating an encrypted variant of

chunk content so that the resulting chunk address satisfies certain

constraints, e.g. being closer to or farther away from a particular

address.
missing chunk notification protocol

A protocol used when a downloader cannot find a chunk, allowing

it to initiate a recovery process and request the missing chunk

from a pinner of that chunk.
mutable resource updates

Feeds that represent revisions of the same semantic entity.

nearest neighbours

Generally, peers that are closest to the node. In particular, it refers

to peers residing within the neighbourhood depth of each other.
neighbourhood

An area of a certain distance around an address.

The distance from the node within which its peers are considered

nearest neighbours. Also the highest PO d such that the address

254 Glossary

range designated by the d-bit-long prefix of the node’s overlay

contains at least 3 other peers.
neighbourhood notification

Notification of a feed update which works without the issuer of the

notification needing to know the identity of prospective posters.
neighbourhood selection anchor

A randomly selected value that determines which neighbourhood

can participate in the redistribution round.
neighbourhood size

The number of nearest neighbours of a node.
net provider

A node that contributes more resources to the Swarm network

than it consumes.

net user
A node that consumes more resources of the Swarm network than

it contributes.

network churn
The cycle of accumulation and attrition of nodes by a network.

newcomer

A party entering the Swarm system with zero liquid funds.

node
Nodes that engage in forwarding messages.

A node that is stably online.

A node that stores the requested chunk.

on-chain payment

A payment made through a blockchain network.
opportunistic caching

When a forwarding node receives a chunk, then the chunk is saved

in case it may be requested again.

outbox feed
A feed representing the outgoing messages of a persona.

outbox index key chains

Additional key chains added to the double-ratchet key manage-

ment (beside the ones for encryption) that make the feed update

locations resilient to compromise.

Glossary 255

overlay address

The address used to identify each node running in the Swarm net-

work. It is the basis for communication in the sense that it remains

stable across sessions even if the underlay address changes.
overlay address space

The address space of the overlay Swarm network consisting of

256-bit integers.
overlay network

The connectivity pattern of the secondary conceptual network in

Swarm, a second network scheme overlayed over the base under-

lay network.
overlay topology

The connectivity graph realising a particular topology over the

underlay network.

payment threshold

The value of debt at which a cheque is issued.
peer

Nodes that are in relation to a particular node x are called peers

of x.

A peer that succeeds some other peer in the chain of forwarding.
peer-to-peer

A network architecture where tasks or workloads are partitioned

between equally privileged participants known as peers.
pinner

A node keeping a persistent copy of a chunk.
pinning

The mechanism that makes content sticky and prevents it from

being removed by garbage collection.
plausible deniability

The ability to deny knowledge of any damnable actions committed

by others.
postage batch

An ID associated with a verifiable payment on the chain which

can be attached to one or more chunks as a postage stamp.

256 Glossary

pre-key bundle

Contains all the necessary information that an initiator needs to

know about the responder to initiate a cryptographic handshake.
prompt recovery of data

The protocol used for missing chunk notification and recovery.
proof of density

A construct that allows the winners of the Schelling game round to

demonstrate that the chunks within their storage depth fill their

reserve.
proof of entitlement

Evidence provided by storer nodes in a neighbourhood to the

blockchain, demonstrating that they have the required reserve.
proximity order

A measure of relatedness of two addresses on a discrete scale.
proximity order bin

An equivalence class of peers in regard to their proximity order.
pub/sub systems

A publish/subscribe system is a form of asynchronous communi-

cation where any message published is immediately received by

subscribers.
pull syncing

A network protocol responsible for eventual consistency and max-

imum resource utilisation by pulling chunks by a certain node.
push syncing

A network protocol responsible for delivering a chunk to its proper

storer after it has been uploaded to an arbitrary node.

radius of responsibility

The proximity order designating the area of responsibility.
range queries

Range queries will trigger the retrieval of all but only those chunks

of the file that cover the desired range.
real-time integrity check

For any deterministically indexed feed. Integrity translates to a

non-forking or unique chain commitment.

Glossary 257

recover security

A property that ensures that once an adversary manages to forge

a message from A to B, no future message from A to B will be

accepted by B.
recovery

A process of requesting a missing chunk from specific recovery

hosts.
recovery feed

A publisher’s feed advertising recovery targets to its consumers.
recovery host

Pinning nodes that are willing to provide their pinned chunks in

the context of recovery.
recovery request

A request made to a recovery host to initiate the reupload of a

missing chunk known to be pinned in its local store.
recovery response envelope

An addressed envelope which provides a way for recovery hosts

to directly and efficiently respond to the originator of the recov-

ery request without incurring additional costs or computational

burden.
recovery targets

Volunteering nodes that are advertised by the publisher as keeping

pinned its publication globally pinned.
redundancy

In the context of the distributed chunk store, redundancy is achieved

through surplus replicas or so-called parities that contribute to

the resilience of chunk storage in the face of churn and garbage

collection.
redundant Kademlia connectivity

A Kademlia connectivity that remains intact even if some peers

churn.
redundant retrievability

A chunk is said to be redundantly retrievable with degree r if it is

retrievable and would remain so even after any r nodes responsi-

ble for it leave the network.

258 Glossary

Reed-Solomon coding

A systemic erasure code that generates k extra ’parity’ chunks

when applied to data consisting of n chunks. These chunks allow

for the reconstruction of the original blob as long as any n out of

the total n +k chunks are available.

reference count
A property of a chunk used to prevent it from being garbage col-

lected. It is increased when the chunk is pinned and decreased

when it is unpinned.
relaying node

A node relaying messages in the context of forwarding Kademlia.
requestor node

A node that requests information from the network.
reserve

A fixed size of storage space on a node dedicated to storing chunks

from its area of responsibility.

reserve commitment
The data provided by a node in the round of the Schelling game

containing information about the reserve it is holding.
reserve depth

The base 2 logarithm of the DISC reserve size, rounded up to the

nearest integer.
reserve sample

A part of the reserve used to test the consensus regarding the

reserve content of a neighbourhood.
retrieve request

A peer-to-peer protocol message that asks for the delivery of a

chunk based on its address.
reveal phase

The phase in the redistribution round of the Schelling game in

which the participants who committed reveal their reserve com-

mitment hash.
reward pot

The total accumulated storage rent from all postage batches for a

specific period.

Glossary 259

root access
Non-privileged access to encrypted content based on meta-information

encoded in the root manifest entry for a document.

root access manifest
A special unencrypted manifest used as an entry point for access

control.
routability

The ability for a chunk to be routed to a destination.
routed delivery

A hypothetical method of implementing chunk delivery using

Kademlia routing independently of the initial request.
routing

The process of relaying messages via a chain of peers ever closer

to the destination.

rules of the reserve
Rules that define the content of the reserve on a node.

saboteurs
The set of committers who either did not reveal data or revealed

invalid data in the round of the Schelling game.

saturated Kademlia table
Nodes with a saturated Kademlia table realise Kademlia connec-

tivity.
saturation depth

The neighbourhood depth in the context of saturation (minimum

cardinality) constraints on proximity bins outside the nearest

neighbourhood.
Schelling game

A mechanism that facilitates peer cooperation in redundantly

storing data for the network’s benefit, structured as a sequence of

redistribution rounds.
second-layer payment

Payments processed by an additional system superimposed on a

blockchain network.

260 Glossary

security deposit

The stake a node must put up when registering to be able to sell

promissory storage receipts.

seeder
A user who hosts the content in the BitTorrent peer-to-peer file

exchange protocol.
sender anonymity

As requests are relayed from peer-to-peer, those further down on

the request cascade can never know who the originator of the

request is.
session key

One of the keys involved in the process of allowing selective access

to content to multiple parties.

shallow bin
A bin that is relatively far away from a particular node and hence

contains a larger part of the address space.
single owner chunk

A special type of chunk in Swarm whose integrity is ensured by the

association of its payload to an identifier attested by the signature

of its owner. The identifier and the owner’s account determine the

chunk address.

A 32-byte key used in single owner chunks: the payload is signed

against it by the owner and hashed together with the owner’s

account results in the address.

The account of the owner of single owner chunk.

Part of a single owner chunk with size of maximum 4096 bytes of

regular chunk data.
singleton manifest

A manifest that contains a single entry to a file.

sister nodes
The nodes in the other half of the old neighbourhood after a neigh-

bourhood split.
span value

An 8-byte encoding of the length of the data span subsumed under

an intermediate chunk.

Glossary 261

spurious hop

Relaying traffic to a node without increasing proximity to the tar-

get address.

stake balance
The amount of stake serving as collateral by the staker.

stake density

The amount of stake per neighbourhood size.
staking

Mechanism used to steer nodes to provide reliable service in their

neighbourhoods where they stake some amount that represents

their commitment.
stamped addressed envelope

Addressed envelope with an attached stamp.
statement of custody receipt

A receipt from the storer node to the uploader after successful

push syncing of a chunk.
storage depth

The lowest proximity order at which a compliant reserve stores all

batch bins.
storage rent

The amount paid for storage by purchasing postage batches.
storage slot

A designated space in a postage batch where a specific chunk is

assigned.
stream provider

Provides of a stream of chunks to another node upon request.
swap

A Swarm accounting protocol with a tit-for-tat accounting scheme,

enabling scalable microtransactions. It also includes a network

protocol referred to as Swap.

Swarm manifest
A structure that defines a mapping between arbitrary paths and

files to handle collections.

262 Glossary

swear

Incentive scheme where nodes registered on the Swarm network

are accountable and stand to lose their deposit if they are found

to violate the rules of the Swarm in an on-chain litigation process.

swindle
Incentive scheme where nodes monitor other nodes to check if

they comply with their promise by submitting challenges accord-

ing to a process of litigation.

tar stream
In computing, tar is a computer software utility for combining

multiple files into a single archive file, often referred to as a tarball.
targeted chunk delivery

A mechanism for requesting a chunk from an arbitrary neigh-

bourhood where it is known to be stored and delivering it to an

arbitrary neighbourhood where it is known to be needed.

time to live
The lifespan or lifetime of a request or other message in a com-

puter or network.
tragedy of the commons

Disappearing content will have no negative consequence to any

one storer node if no negative incentives are used.
Trojan chunk

A chunk containing a disguised message while appearing indistin-

guishable from other chunks.

trustless
A property of an economic interaction system where service provi-

sion is either realtime verifiable and/or providers are accountable,

rewards and penalties are automatically enforced, and where –

as a result – transaction security is no longer contingent upon

reputation or trust and is therefore scalable.

underlay address

The address of a Swarm node on the underlay network, which

might not remain stable between sessions.

Glossary 263

underlay network

The lowest level base network through which nodes connect using

a peer-to-peer network protocol as their transport layer.
uniformity depth

The number of storage slots or buckets within a postage batch

specified in powers of 2.
upload and disappear

A method of deploying interactive dynamic content to be stored in

the cloud so it may be retrieved even if the uploader goes offline.
upload tag

An object that represents an upload and tracks the progress by

counting the number of chunks that have reached a specific state.
uploader

An entity uploading content to the Swarm network.
upstream peer

The peer that precedes some other peer in the chain of forward-

ing.

world computer

Global infrastructure that supports data storage, transfer, and

processing.

World Wide Web
A part of the Internet where documents and other web resources

are identified by Uniform Resource Locators and interlinked by

hypertext.

Websites where people were limited to viewing content in a pas-

sive manner.

Describes websites that emphasise user-generated content, ease

of use, participatory culture, and complex user interfaces for end

users.

A decentralised, censorship-resistant way of sharing and even

collaboratively creating interactive content, while retaining full

control over it.

ZeroNet
A decentralised web platform using Bitcoin cryptography and the

BitTorrent network.

264 Glossary

INDEX

A

access control 36, 229, 231, 271

access control trie 153, 229, 271

access key 151

access key decryption key 153

accessible chunk 65

addressed envelope 181

anonymous retrieval 67

anonymous uploads 71

area of responsibility 62, 108

authoritative version history 163

B

backwarding 66, 67

balanced binary tree 46

batch 140

batch bins 109

batch depth 106

batch size 106, 252

bin ID 73

binary Merkle tree 55, 271

binary Merkle tree chunk 54, 271

binary Merkle tree hash 54, 55, 59,

61, 140, 271

BitTorrent 10, 14

blockchain 12

bzz network ID 39

C

challenge 134

cheque 91–94

chequebook contract 91, 94

chunk 11, 14, 35, 53

chunk span 141

chunk synchronisation 73

chunk value 65

claim phase 120

collect-and-run attack 137

collective information 25

collision slot 223

commit phase 119

committed stake 121

content addressed chunk 54

D

data silo 17, 26

data slavery 20

decentralised network 48

deep bin 87

denial of service (DoS) 69

destination target 173

devp2p 39

direct delivery 65

265

266 Index

direct notification from publisher

185

disconnect threshold 92

distributed hash table 11, 14, 50,

51, 271

distributed immutable store for

chunks 50, 51, 53, 65, 271

distributed storage 37, 50, 51, 172

distributed web application 14,

271

double ratchet 157, 169

duplicate chunk 222

E

effective demand 112

elliptic curve Diffie-Hellman 152,

271

encrypted reference 151

enode URL scheme 39

entanglement code 193

epoch 164

epoch base time 164

epoch grid 165

epoch reference 165

epoch-based feeds 156, 164

epoch-based indexing 160, 167

erasure code 36, 193, 219

Ethereum Name Service 147, 231,

271

Ethereum Virtual Machine (EVM)

13, 61, 271

eventual consistency 64, 65, 75

extended triple Diffie–Hellmann

key exchange 169, 177, 272

F

FAANG 18

fair data economy 3, 17

feed aggregation 160

feed index 156, 166, 171

feed topic 156

feeds 36

partitions 158

periodic feeds 159

real-time feeds 159

series 158

sporadic feeds 159

forwarding Kademlia 43, 45

forwarding lag 45

freeriding 16

future secrecy 170

G

garbage collection 64

garbage collection strategy 64

global balance 94

granted access 151

guaranteed delivery 38

H

hive protocol 48, 62

honest peers 120

I

immutable chunk store 54

incentive strategy 16

inclusion proofs 55

indexing scheme 157, 159

insider 99

Index 267

InterPlanetary File System 14, 16,

271

issuance volume 103, 106, 244

K

Kademlia 37, 40, 45

Kademlia connectivity 43

Kademlia table 41

thin Kademlia table 45

Kademlia topology 40, 41, 43, 45

key derivation function 150

L

liars 120

libp2p 39

light node 38, 46, 75

litigation 132–134

load balancing 50, 53

lookup key 153

lookup strategy 159, 160

M

manifest entry 144, 145

maximum syncing latency 123

mining chunks 60

missing chunk notification

protocol 193, 204

mutable resource updates 158

N

nearest neighbours 41, 61

neighbourhood

neighbourhood depth 41, 43,

113

neighbourhood notification 187

neighbourhood selection anchor

118

neighbourhood size 62

net provider 79

net user 79

network churn 45

newcomer 99

node

forwarding node 53, 67, 70

stable node 64

storer node 62

O

on-chain payment 93

opportunistic caching 70

outbox feed 167

outbox index key chains 170

overlay address 39, 49

overlay address space 37

overlay network 37

overlay topology 37, 40

P

payment threshold 91, 92

peer 41, 43, 45

downstream peer 43, 45, 73

peer-to-peer 9, 10, 16, 37, 271

pinner 193

pinning 36, 201, 219

plausible deniability 60, 149

postage batch 103

pre-key bundle 178

prompt recovery of data 204, 271

proof of density 124

proof of entitlement 119

268 Index

proximity order 40, 41, 43, 45, 62,

271

proximity order bin 41, 43, 45, 61

pub/sub systems 159

pull syncing 72

push syncing 71, 261

R

radius of responsibility 62

range queries 230

real-time integrity check 163

recover security 171, 180

recovery 204

recovery feed 205

recovery host 205

recovery request 206

recovery response envelope 207

recovery targets 205, 206, 232

redundancy 50

redundant Kademlia connectivity

62

redundant retrievability 62

Reed-Solomon coding 194, 272

reference count 202

relaying node 87

requestor node 41

reserve 108

reserve commitment 119

reserve depth 111

reserve sample 122

retrieve request 61

reveal phase 120

reward pot 113

root access 151, 251

root access manifest 152, 229, 231

routability 45

routed delivery 66

routing 43

rules of the reserve 109

S

saboteurs 120

saturated Kademlia table 41, 45

saturation depth 49

Schelling game 116

second-layer payment 94

security deposit 131

seeder 10

sender anonymity 46

session key 151

shallow bin 87

single owner chunk 54, 55, 58, 61,

183

identifier 58

owner 58

payload 58

singleton manifest 227

sister nodes 128

span value 61

spurious hop 85

stake balance 121

stake density 124

staking 121

stamped addressed envelope 183

statement of custody receipt 71

storage depth 112

storage rent 113

storage slot 104

stream provider 73

swap 91, 132, 224, 272

Swarm manifest 139, 144

swear 132, 133, 272

Index 269

swindle 132, 134, 272

T

tar stream 228

targeted chunk delivery 190

time to live 81, 272

tragedy of the commons 29, 131

Trojan chunk 139, 173

trustless 14

U

underlay address 38, 39, 41, 49

underlay network 37, 39, 255

uniformity depth 107

upload and disappear 16

upload tag 220

uploader 71

upstream peer 45, 73

W

world computer 28

World Wide Web 3, 10, 19, 35, 272

Web 1.0 3

Web 2.0 4, 10, 35

Web 3.0 12, 13, 17, 22, 35

Z

ZeroNet 14

270 Index

ACRONYMS AND ABBREVIATIONS

AC access control.

ACT access control trie.

API application programming interface.

BMT chunk binary Merkle tree chunk.

BMT hash binary Merkle tree hash.

BMT binary Merkle tree.

dapp distributed web application.

DHT distributed hash table.

DISC distributed immutable store for chunks.

ECDH elliptic curve Diffie-Hellman.

ENS Ethereum Name Service.

EVM Ethereum Virtual Machine (EVM).

HTTP Hypertext Transfer Protocol.

IPFS InterPlanetary File System.

ISP internet service provider.

MAC message authentication code.

P2P peer-to-peer.

PO proximity order.

prod prompt recovery of data.

271

272 Acronyms and abbreviations

RS Reed-Solomon coding.

SWAP Swarm Accounting Protocol, see swap.

SWEAR Secure Ways of Ensuring ARchival or Swarm Enforcement

And Registration, see swear.

SWINDLE Secured With INsurance Deposit Litigation and Escrow,

see swindle.

TLD top level domain.

TTL time to live.

WWW World Wide Web.

X3DH extended triple Diffie–Hellmann key exchange.

	Prolegomena
	Acknowledgments
	I Prelude
	The evolution
	Historical context
	Web 1.0
	Web 2.0
	Peer-to-peer networks
	The economics of BitTorrent and its limits
	Towards Web 3.0

	Fair data economy
	The current state of the data economy
	The current state and issues of data sovereignty
	Towards self-sovereign data
	Artificial intelligence and self-sovereign data
	Collective information

	The vision
	Values
	Design principles
	Objectives
	Impact areas
	The future

	II Design and architecture
	Network
	Topology and routing
	Requirements for underlay network
	Overlay addressing
	Kademlia routing
	Bootstrapping and maintaining Kademlia topology

	Swarm storage
	Distributed immutable store for chunks
	Content addressed chunks
	Single owner chunks
	Chunk encryption
	Redundancy by local replication

	Push and pull: chunk retrieval and syncing
	Retrieval
	Push syncing
	Pull syncing
	Light nodes

	Incentives
	Sharing bandwidth
	Incentives for serving and relaying
	Pricing protocol for chunk retrieval
	Incentivising push-syncing

	Swap: accounting and settlement
	Peer to peer accounting
	Cheques as off-chain commitments to pay
	Waivers
	Zero cash entry
	Sanctions and blacklisting

	Postage stamps
	Purchasing upload capacity
	Limited issuance
	Rules of the reserve
	Reserve depth, storage depth, neighbourhood depth

	Fair redistribution
	Neighbourhoods, uniformity and probabilistic outpayments
	The mechanics of the redistribution game
	Staking
	Neighbourhood consensus over the reserve
	Pricing and network dynamics

	Insurance: negative incentives
	Punitive measures
	Contracts through receipts
	Submitting a challenge
	Successful challenge and enforcement

	Summary

	Building on the DISC
	Data structures
	Files and the Swarm hash
	Collections and manifests
	URL-based addressing and name resolution
	Maps and key–value stores

	Access control
	Encryption
	Managing access
	Selective access to multiple parties
	Access hierarchy

	Feeds: mutability in an immutable store
	Feed chunks
	Indexing schemes
	Integrity
	Epoch-based indexing
	Real-time data exchange

	Pss: direct push messaging with mailboxing
	Trojan chunks
	Initial contact for key exchange
	Addressed envelopes
	Notification requests

	Persistence
	Cross-neighbourhood redundancy: erasure codes and dispersed replicas
	Error correcting codes
	Erasure coding in the Swarm hash tree
	Incomplete chunks and dispersed replicas
	Prefetching strategies for retrieval

	Data stewardship: pinning, reupload and recovery
	Local pinning
	Global pinning
	Recovery

	Dream: deletion and immutable content
	Deletion and revoking access
	Construction
	Correctness, security and privacy

	Developer interface
	Configuring and tracking uploads
	Upload options
	Upload tags and progress bar
	Postage
	Additional upload features

	Storage
	Uploading files
	Collections and manifests
	Access control
	Download

	Communication

	Bibliography

	III Indexes
	Glossary
	Index
	Acronyms and abbreviations

