
Transport layer
Underlay network

Libp2p networking stack provides all required properties for underlay network.

1. Addressing is provided in a form of multi address for every node, which
is referred here as the underlay address. Every node can have multiple
underlay addresses depending on transports and network listening addresses
that are configured.

2. Dialing is provided over libp2p supported network transports.
3. Listening is provided by libp2p supported network transports.
4. Live connections are established between two peers and kept open for

accepting or sending messages.
5. Channel security is provided with TLS and libp2p secio stream security

transport.
6. Protocol multiplexing is provided by libp2p mplex stream Multiplexer

protocol.
7. Delivery guarantees are provided by using libp2p bidirectional streams to

validate the response from the peer on sent message.
8. Serialization is not enforced by libp2p, as it provides byte streams allowing

flexibility for every protocol to choose the most appropriate serialization.

The underlaying transport layer that is used by all protocols is based on libp2p.
This chapter only contains the information that is required to be taken into
account by any client that intends to connect to the swarm network.

libp2p uses cryptographic key pairs to sign messages and derive unique peer
identities (or “peer ids”).

Although private keys are not transmitted over the wire, the serialization format
used to store keys on disk is also included as a reference for libp2p implementors
who would like to import existing libp2p key pairs.

Although RSA and Ed25519 should work fine - Swarm uses ECDSA secp256R1
and this standard is required by any alternative client that wants to connect to
swarm.

Key encodings and message signing semantics are covered on this link.

Note that PrivateKey messages are never transmitted over the wire. Current
libp2p implementations store private keys on disk as a serialized PrivateKey
protobuf message. libp2p implementors who want to load existing keys can use
the PrivateKey message definition to deserialize private key files.

In Swarm, the key value stored in the file is encrypted using a password.

Where are keys used?

Keys are used in two places in libp2p. The first is for signing messages and the
second is for generating peer ids.

1

https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md#keys


Addressing

Once generated the keys should be persisted to avoid them getting re-generated
“on-the-fly” and generating unnecessary churn in the network.

More detailed information on how nodes address each other in swarm can be
found in the official libp2p documentation, specifically about peer ids format
and addressing

Connecting to the swarm network using dnsaddr links Swarm supports
the dnsaddr format (example: /dnsaddr/mainnet.ethswarm.org). A detailed
document about the format is describer here

In order for an alternative client to connect to swarm it needs to be able to
resolve this format to a valid underlay address.

The steps are:

• getting the TXT value from the DNS server:
– - _dnsaddr.mainnet.ethswarm.org. 30 IN TXT "dnsaddr=/dnsaddr/swarm-1.mainnet.ethswarm.org"

• resolving this value to it’s next TXT record:
– dig TXT _dnsaddr.swarm-1.mainnet.ethswarm.org _dnsaddr.swarm-1.mainnet.ethswarm.org.

30 IN TXT "dnsaddr=/dnsaddr/bee-1.mainnet.ethswarm.org"
• resolving the TXT record to the underlay address value:

– _dnsaddr.bee-1.mainnet.ethswarm.org. 30 IN TXT "dnsaddr=/ip4/3.75.238.129/tcp/31101/p2p/QmbyCMd2LABgwDVz4eT7vJhkV3LmFMJgcbjGeVfjGkvBQ9"
• the resulting address should be accessible and accepting connections.

While the implementation can support connecting to multiple addresses exposed
by the same node (for better connectivity) it is enough to connect to one to join
the swarm network.

Worth mentioning that the level at which the underlay value resides can be
arbitrary and an alternative client should support recursive lookups until such
value is found.

Optional components

NAT - the client is free to use any available tool as it does not interfere with the
network in any significant way.

The recommended serialization is Protobuf with varint delimited messages in
streams.

Protocols
Swarm Bee organizes P2P communication in protocols as logical units under a
unique name that may define one or more streams for communication.

2

https://docs.libp2p.io/
https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md#peer-ids
https://github.com/libp2p/specs/tree/master/addressing
https://github.com/libp2p/specs/blob/master/addressing/README.md#dnsaddr-links


Headers

A Swarm specific requirement for all libp2p streams is to exchange Header
protobuf messages on every stream initialization between two peers. This
message encapsulates a stream scoped information that needs to be exchanged
before any stream specific data or messages are exchanged. Headers are sequences
of key value pairs, where keys are arbitrary strings and values are byte arrays that
do not impose any specific encoding. Every key may use appropriate encoding
for the data that it relates to.

syntax = "proto3";

package headers;

message Headers {
repeated Header headers = 1;

}

message Header {
string key = 1;
bytes value = 2;

}

On every stream initialization, the peer that creates it, is sending Headers
message regardless if it contains header values or not. The receiving node must
read this message and respond with response header using the same message
type. This makes the header exchange sequence finished and any other stream
data can be transmitted depending on the protocol.

Streams

Libp2p provides Streams as the basic channel for communication. Streams are
full-duplex channels of bytes, multiplexed over a singe connection between two
peers.

Every stream defines:

• a version that follows semantic versioning in semver form.

• data serialization definitions.

• sequence of data passing between peers over a full-duplex stream.

Streams are identified by libp2p case-sensitive protocol IDs. Swarm Bee uses
the following convention to construct stream identifiers:

/ swarm /{ ProtocolName }/{ ProtocolVersion }/{ StreamName }

• All stream IDs are prefixed with /swarm.

• ProtocolName is a string in a free form that identifies the Swarm protocol.

3



• ProtocolVersion is a string in a semver form that is used to specify com-
patibility between protocol implementations over time.

• StreamName is a string in a free form that identifies a defined stream
under the Swarm protocol.

Data passing sequence must be synchronous under one opened stream. Multiple
streams can be opened at the same time that are multiplexed over the same
connection exchanging data independently and asynchronously. Streams may
use different data exchanging sequences, such as:

• single message sending not waiting for the response by the peer if it is not
needed before closing the stream.

• multiple message sending a series of data that is sent to a peer without
reading from it before closing the stream

• request/response requiring a single response for a single request before
closing the stream

• multiple requests/response

• cycles requiring a synchronous response after every request before closing
the stream exact message sequence requiring multiple message types over a
single stream in an exact order, such as in the handshake protocol Streams
must have a well predefined sequences, that are kept as simple as possible
for a single purpose. For complex message exchanges, multiple streams
should be used. Streams may be short lived for immediate data exchange
or communication, or long lived for notifications if needed.

Handshake protocol
Handshake protocol is the protocol that is always run after two peers are
connected and before any other protocols are established. It communicated
information about peer Overlay address, network ID and light node capability.

Handshake protocol defines only one stream:

• ID: /swarm/handshake/1.0.0/handshake

• Serialization: Varint delimited Protobuf

Message definition:

syntax = "proto3";

package handshake;

message Syn {
bytes ObservedUnderlay = 1;

}

4



message Ack {
BzzAddress Address = 1;
uint64 NetworkID = 2;
bool FullNode = 3;
bytes Nonce = 4;
string WelcomeMessage = 99;

}

message SynAck {
Syn Syn = 1;
Ack Ack = 2;

}

message BzzAddress {
bytes Underlay = 1;
bytes Signature = 2;
bytes Overlay = 3;

}

Message sequence is replicated from TCP three way handshake to ensure message
deliverability.

Upon connection a requesting peer construct a new handshake stream and
sends the Syn message with its Overlay address, Network ID and Lightnode
capability flag, and waits for SynAck response message from the responding
peer. It then sends its own Syn information and also Ack with the received
Overlay address for confirmation by the requesting peer. After the requesting
peer receives the SynAck message from the responding peer and validates that
the received Ack information in it is correct, it sends the Ack message as a
confirmation to the responding peer. The stream is closed by the responding
peer after it receives the Ack message. If network IDs are not the same between
to peers, the connection must be terminated during the Syn - SynAck exchange.
Connection must be terminated if the handshake is performed between two peers
multiple times over the same connection.

Hive protocol
Hive protocol enables nodes to get information about other peers that are
relevant to them. The information communicated are both overlay and underlay
addresses of the known remote peers.

This information is needed in order to reach and maintain a saturated Kademlia
connectivity.

The exchange of this information happens upon connection, however nodes can
broadcast newly received peers to their peers during the lifetime of connection.

The overlay address serves to select peers to achieve the connectivity pattern

5



needed for the desired network topology, while the underlay address is needed to
establish the peer connections by dialing selected peers.

Upon receiving a peers message, nodes should store the peer information in their
address book, i.e., a data structure containing info about peers known to the
node that is meant to be persisted across sessions.

Upon request from downstream (connect) - the node will send the known peer
addresses in batches of fixed size, until all are exhausted.

The process of sending the peer underlays is rate limited for a more fair distribu-
tion of resources among consumers of the protocol.

Hive protocol defines following streams:

• ID: /swarm/hive/1.1.0/peers

• Serialization: Varint delimited Protobuf

Message definitions:

syntax = "proto3";

package hive;

message Peers {
repeated BzzAddress peers = 1;

}

message BzzAddress {
bytes Underlay = 1;
bytes Signature = 2;
bytes Overlay = 3;
bytes Nonce = 4;

}

When nodes are connected, they can request peers for the appropriate proximity
bin, in order to achieve optimal saturation. This can be done in the beginning
and/or during the lifetime of the connection, if needed (ex. when saturation of
the node changes for the particular bin). This is done by sending Peers message
over the /swarm/hive/1.1.0/peers stream, and receiving the list of known
peers from the Peers message in the response.

During the lifetime of connection, nodes can broadcast newly found peers to their
peers. This is done over /swarm/hive/1.1.0/peers notification by sending the
Peers message with newly found or connected node.

All new (not known) peers found in Peers message, received either way, should
be automatically broadcasted to all subscribed peers, in the same way already
explained above.

6



Fetching peers using hive/peers stream

This is a request/response style communication that is happening over the
/swarm/hive/1.1.0/peers stream. On each request, new stream is created
with the appropriate id, and after the response is received, stream should be
closed by both side.

Requesting side

Requesting node creates a stream and sends a Peers message, specifying the
appropriate bin that it is interested in, and waits for the Peers message as
response. The limit field can be used to limit the maximum number of peers
in the response. The size 0 means that there is no limit. After the response is
received, requesting node should close it’s side of the stream, to let the other
side know that response is read, and move on to processing the response. Each
new peer (that is not previously known) received should be broadcasted to all
subscribed peers.

Responding side

When the stream is created, responding node should wait for the Peers request
from the requesting node, and send a Peers response, containing the appropriate
Peers based on the request. After the response is sent, this node should wait for
requesting node to close its side of the stream before closing the streaming and
moving on.

Sending peers notification using hive/peers stream

This is a notification style communication that is happening over the
/swarm/hive/1.1.0/peers notification stream. On each newly found or
connected peer, node should send info about this peer to all subscribed peers.

Sending side

Stream with appropriate ID is created and the Peers message is sent over the
stream. There is no response to this message. The sending node should wait for
the receiving side to close its side of the stream before closing the stream and
moving on.

Receiving side

When the stream is created, receiving node should wait for the Peers message.
After receiving the message, node should close its side of the stream to let sender
node that the message was received, and move on with processing. If the new
node was not known, it should also be broadcasted to all subscribed peer. Nodes
should keep track of peer info they already sent to other peers, or received it
from, in order to avoid sending duplicate or even circular Peers notifications.

7



Retrieval
The retrieval of a chunk is a process which fetches a given chunk from the network
by its address. Swarm involves a direct storage scheme of fixed size where chunks
are stored on nodes with address corresponding to the chunk address. The
retrieval protocols acts in such a way that it reaches those neighborhoods
whenever a request is initiated. Such a route is sure to exist as a result of the
Kademlia topology of keep-alive connections between peers.

The process of relaying the request from the initiator to the storer is called
forwarding (pushsync) and also the process of passing the chunk data along the
same path is called backwarding.

Conversely - Backwarding and Forwarding are both notions defined on a keep
alive network of peers as strategies of reaching certain addresses.

If we zoom into a particular node in the retrieval path we see the following
strategy:

• Receive the request
• Decide who to forward the request to (decision strategy)
• Have a way to match the the response to the original request

The key elements of the second step are:

• the strategy of choosing the peer to forward the request to
• how they react to failure like stream closure or nodes dropping offline or

closing the protocol connection
• whether we proactively initiate several requests to peers

Retrieval protocol defines the following streams:

• ID: /swarm/retrieval/1.4.0/retrieval

• Serialization: Varint delimited Protobuf

Message definitions:

syntax = "proto3";

package retrieval;

message Request {
bytes Addr = 1;

}

message Delivery {
bytes Data = 1;
bytes Stamp = 2;
string Err = 3;

}

8



Requesting side

Requesting node creates a stream and sends a Request message, specifying the
chunk address and waits for the Delivery response message. If the response
message contains a non empty Err field the requesting node closes the stream
and then can re-attempt retrieving the chunk from the next peer candidate.

Responding side

When the stream is created, the responding node should wait for the retrieval
Request from the downstream. Once the request is received, the responding
side will perform the steps below.

• Given a valid chunk address the first thing we do is lookup the chunk in
the local store.

• If the chunk is not found locally we forward the request to the network.
• If we get the chunk from the network we might put it in the cache to avoid

the extra cost in case the same address is requested repeatedly.
• If the chunk is not present or other errors have occurred in the process we

return the unsuccessful response to the requester, otherwise we return the
chunk with the associated stamp.

A successful response is a Delivery message with an empty error that will
contain the chunk data and its associated stamp. After the response is sent,
this node should wait for requesting node to close it’s side of the stream before
closing the streaming and moving on.

Retries and error cases

If the node that requested a chunk receives an error from the upstream it might
retry the action unless it receives an explicit error code that the chunk has not
been found. In this case it will moved on to the next peer candidate and repeat
the request. If the failure reason is that the requesting peer is in overdraft, it
will de-prioritize the corresponding upstream, giving it time to allow for balance
replenishment. A ‘backwarder’ will give up after the first failure while an ‘origin’
node might repeat the request multiple time towards the same peer before giving
up. A ‘multiplexer’ might attempt to fetch the chunk more than one time since
being in the close reach of the neighborhood it has a higher chance of finding
the chunk

Pushsync
Pushsync protocol attempts to push a chunk to its destination neighborhood by
selecting a peer (or peers) that is closer to it and further delegating the act of
chunk transfer.

Every chunk is sure to have a destination neighborhood and is detected by
comparing the overlay address of the peer and the chunk address. This operation

9



returns the PO (proximity order). If this PO is greater or equal to the value of
the storage radius then the chunk has reached its neighborhood.

That means that a chunk will travel through the network until it lands on a peer
whose PO (between peer address and the chunk address) is greater or equal to
the storage radius of that peer. The peer has the responsibility to store it in
its reserve and sign a receipt with the peers signature and on the origin node it
will confirm that proximity order between the storer node and chunk address
is within the storage radius. If it’s outside of the radius - we have a shallow
receipts - and the chunk will be re-pushed eventually.

A chunk will be pushed multiple time if it’s associated with more than one
postage stamp. The receiving side is responsible to take this into account and
persist the chunk accordingly.

Pushsync protocol defines the following streams:

• ID: /swarm/pushsync/1.3.0/pushsync

• Serialization: Varint delimited Protobuf

Message definitions:

syntax = "proto3";

package pushsync;

message Delivery {
bytes Address = 1;
bytes Data = 2;
bytes Stamp = 3;

}

message Receipt {
bytes Address = 1;
bytes Signature = 2;
bytes Nonce = 3;
string Err = 4;

}

There are three roles that a peer can ’play’: originator, forwarder and storer:

• originator is the node that is the first one to ‘see’ a new chunk
• forwarder is the node that takes the chunk and moves it closer to the storer
• storer is the node that has the responsibility to persist the chunk and to

forward it to its neighborhood peers

10



Pushing side

An originator or an forwarder will create a new stream to which it will write a
Delivery message containing the chunk data with its associated stamp. It will
then wait for the response message. If the reply contains a non empty error, the
pushing side will attempt pushing the chunk to the next best peer, as described
bellow.

Storer side

Once the upstream peer receives the Delivery message and concludes that it
is responsible to store the chunk it will perform the appropriate persistence
interactions and will return a Receipt message. After the response is sent, this
node should wait for requesting node to close it’s side of the stream before closing
the streaming and moving on.

Retries and error handling

If the node that pushed the chunk receives an error from the upstream it might
retry the action multiple time if it’s an origin node. If it exhaust its attempts
to push the chunk to the closest peer it will move on to the next closest peer
candidate and repeat the request. If the failure reason is that the pushing peer
is in overdraft, it will de-prioritize the corresponding upstream, allowing for
balance replenishment. A ‘forwarder’ will give up after the first failure while an
‘origin’ node might repeat the request multiple time towards the same peer before
giving up. A ‘multiplexer’ might attempt to push the chunk more than one time
since being in the close proximity to the neighborhood it has the confidence that
the nodes in its reach are the ones responsible for persisting the chunk.

Further details

As a forwarder when we receive a chunk - if we’re in reachable state and within
the storage radius - we store the chunk to disk - and then we push the chunk to
closest known peer.

If we are an origin peer we should not store the chunk initially so that the chunk
is always forwarded into the network.

If no peer can be found from an origin peer, the origin peer may store the chunk.

Non-origin peers store the chunk if the chunk is within depth.

For non-origin peers, if the chunk is not within depth, they may store the chunk
if they are the closest peer to the chunk.

In determining the closest peer we compare the proximity of the given peer with
the chunk address. In order to determine if we act as a multiplexer and push the
chunk in parallel to multiple peers we then compare the proximity value with
the storage radius. We sent out the chunk to the neighborhoods in parallel (to
maximum 2 peers at a time).

11



After pushing a chunk we await for reply containing a receipt. If the response
comes back with an error we re-try the attempt. Once we exhaust the retries
we return from the function with a ErrNoPush and cancel the context, thus
stopping all ongoing go-routines.

• If that is true then the skipping of peers and selection of peers needs to be
documented:

• ‘choice strategy’ - how kademlia table is under specifying as there’s several
nodes in the same proximity bin and you will need a secondary choice
between them or some sort of multiplexing for selecting the optimal peer/s
and it’s not well documented:

The Kademlia component has a priority list on how to choose the closest peer:

• first it will decide if to include self (only full nodes who are not the origin
node)

• lookup among peers who are reachable and healthy
• lookup among peers who are reachable
• lookup among all others

The default strategy for any downstream error is retry with a delay that is
variable depending on how many ‘in-flight’ actions we have at any given moment.

Each time a chunk is being pushed to a peer - its (peer) address is added to
skipList to avoid re-trying the same chunk/peer pair. The timeout is 5 min until
the next retry. The peer address is added to the skiplist even if the attempt was
successful - this is because the origin can notice that the receipt is too shallow,
so the pusher can consider the attempt as unsuccessful.

Receiving an invalid chunk in the response will result in blocklisting of the peer
that provided the chunk.

Pullsync
Pullsync is a subscription style protocol used to synchronize the chunks between
neighborhood nodes. It bootstraps new nodes by filling up their storage with
the chunks in range of their storage radius and also ensures eventual consistency
- by making sure that the chunks will gradually migrate to their storer nodes.

Pullsync is done in parallel using multiple workers, one for each unique pair of
peer/binID.

The chunks are served in batches (ordered by timestamp) and they cover con-
tiguous ranges.

During pullsyncing the same chunk can be received multiple times if it has been
stamped multiple times with different postage stamps. The pulling side must
store it accordingly.

12



The downstream peers coordinate their syncing by requesting ranges from the
upstream with the help of the “interval store” - to keep track of which ranges
are left to be synchronized.

Because live syncing happens in sessions - it is inevitable that after a session is
completed - the downstream peer disconnects and will be missing chunks that
arrive later (after disconnect).

For this purpose the downstream peer will make a note about the timestamp of
the last synced chunk on disconnect.

The point of the interval based approach is to cover those gaps that inevitably
arise in between syncing sessions.

To save bandwidth, before the contents of the chunk is being sent over the
wire, the upstream will sent a range of chunk addresses for approval. If the
downstream decides that some (or all) addresses are desired - a confirmation
message is sent to the upstream, to which it responds with the chunks mentioned
in the request.

Pullsync protocol defines following streams:

• ID: /swarm/pullsync/1.3.0/pullsync

• ID: /swarm/pullsync/1.3.0/cursors

• Serialization: Varint delimited Protobuf

Message definitions:

syntax = "proto3";

package pullsync;

message Syn {}

message Ack {
repeated uint64 Cursors = 1;
uint64 Epoch = 2;

}

message Get {
int32 Bin = 1;
uint64 Start = 2;

}

message Chunk {
bytes Address = 1;
bytes BatchID = 2;

}

13



message Offer {
uint64 Topmost = 1;
repeated Chunk Chunks = 2;

}

message Want {
bytes BitVector = 1;

}

message Delivery {
bytes Address = 1;
bytes Data = 2;
bytes Stamp = 3;

}

Getting cursors

Initially it will request the cursors from the upstream by opening up a new
/swarm/pullsync/1.3.0/cursors stream and sending a Syn message that in-
cludes a epoch timestamp. The expected response is the Ack message containing
a collection of int64 representing the cursor. The stream is closed on the
requesting side.

To sync an interval the requesting peer sends a Get message to the upstream,
message containing the bin ID and the starting position.

Requesting the data

In response a Offer message is returned where the topmost index and a list of
chunk addresses.

After inspecting the chunk addresses we issue a Want message with the addresses
we’re interested in fetching. The upstream responds with a series of Deliver
messages containing the chunk data with their associated stamps. Once all
requested chunks have been delivered the upstream will close the stream.

Error handling

If the upstream times out, returns an error or closes the stream unexpectedly it
will be rescheduled to be synced at a later point in time.

During the first time we get the cursor from a new peer its ’epoch timestamp’
will be persisted against the peer address. Epoch timestamp acts as the unique
fingerprint of the peer’s reserve. If the reserve is wiped out this will generate
a new ’epoch timestamp’. In this way changes in epoch timestamp triggers a
reset of the stored intervals for the given peer - forcing the pulling peer to start
pullsync from scratch.

14



Also changes in Kademlia topology triggers a restart of pullsync - and if no
changes happen in the span of a configurable amount of time (in Swarm it’s 5
minutes) the pullsyncing will be restarted automatically by the scheduler after
timeout.

If during pullsync an invalid chunk is received the upstream is blocklisted
immediately.

Bootstrapping a node

A fresh node starts from the lowest bin ID which corresponds to the oldest
chunks. Once done, the node continue with live syncing.

Live syncing implies that we’ve exhausted syncing from all lower bin IDs and
reached a bin ID which does not have a chunk.

Interval store is a component that stores a list of intervals (start, end) with the
last synced bin ID. Its purpose is to provide methods to add new intervals and
retrieve missing intervals that need to be added.

It may be used in synchronization of streaming data to persist retrieved data
ranges between sessions. There’s a ‘merge’ functionality but is currently unused.
In addition there is a ‘last’ method that returns the value that is at the end of
the last interval.

Most important is the ‘Next’ method that returns the first range interval that is
not fulfilled. Returned start and end values are both inclusive, meaning that the
whole range including start and end need to be added in order to fill the gap in
intervals.

Returned value for end is 0 if the next interval is after the whole range that
is stored in Intervals. Zero end value represents no limit on the next interval
length.

Returned empty boolean indicates if both start and end values have reached the
ceiling value which means that the returned range is empty, not containing a
single element.

Puller uses the storage radius as the indicator of the neighborhood, thus limiting
the number of peers should be pulled from.

When syncing - we start at storage radius up to 31 (from the neighborhood).

For non-neighbours you only sync the bin that your peer is from (its equivalent).

This is only a safety mechanism that ensures that lost chunks are being eventually
pull-synced to their destination by pulling from nodes that are in bins under the
storage radius.

15



Pricing
Pricing protocol is used to announce payment threshold values. Nodes keep a
price table for prices of every proximity order for each peer.

It defines the streams:

• ID: /swarm/pricing/1.0.0/pricing

• Serialization: Varint delimited Protobuf

Message definitions:

syntax = "proto3";

package pricing;

message AnnouncePaymentThreshold {
bytes PaymentThreshold = 1;

}

Notifying side

When there’s a need to upgrade the payment threshold the peer opens a stream
and sends out a AnnouncePaymentThreshold with the new value. It then closes
the stream.

Receiving side

The peer reads the message contents and stores the value locally against the
notifying peer. If the value is below the minimum payment threshold the notifying
peer is disconnected. After reading the message it closes the stream.

Settlement
The purpose of the settlement protocol is to exchange payments with other peers.

Settlement protocol defines the following streams:

• ID: /swarm/pseudosettle/1.0.0/pseudosettle

• Serialization: Varint delimited Protobuf

Message definitions:

syntax = "proto3";

package pseudosettle;

message Payment {
bytes Amount = 1;

}

16



message PaymentAck {
bytes Amount = 1;
int64 Timestamp = 2;

}

Paying side

Paying side opens a stream to the peer it wants to send the payment and issues
a Payment message. It then waits for the accepting side to respond and close
the stream.

Accepting side

Reads the Payment message and after processing it returns a PaymentAck message
containing the timestamp and outstanding debt for the paying side. It then
closes the stream (or resets it - if any error has occurred).

Blocklisting
Blocklisting is the act of banning a certain peer from further interacting with us.
It can be a temporary - for example due to accounting reasons, or permanent
- for reasons such as returning an invalid chunk. Blocklisting a peer implies
terminating any connections and disconnecting from it. A blocklisted peer
will be immediately disconnected if it attempts to re-connect in the future.
Blocklisting will happen automatically if a peer sends an invalid request based
on the receiver’s mode of operation, for example sending a pullsync request to a
boot node.

Caching
Nodes can choose to store chunks that do not fall under area of responsibility in
the event that the chunk belongs to some popular content. Additionally, during
storage radius changes, the chunks evicted from the reserve are transferred into
the cache. In Swarm the cache is a configurable parameter, individual peers can
tune it to their needs. A larger cache size has the benefit of generating more
revenue since the peer does not need to request the chunk from the network and
avoids paying the fee for such action.

Garbage collection

Chunks leaves the reserve for two reasons, in both cases the chunk will go to
cache after eviction:

• Expired postage stamp batch. Note: multiple batches can be associated
with a single chunk.

17



• Reserve is full - we start evicting chunks (from the lowest value batch)
starting from current radius and until the reserve size is below the capacity.

Glossary and definitions
• reserve is the space (fixed capacity 2ˆ22) allocated for the chunks that

fall under a nodes storage radius
• proximity order the number of similar bits in the address (from the left)
• storage radius (storage depth) defines the range of chunk addresses a

node has the responsibility to store where the proximity order of the chunk
addresses must be greater (or equal) to the storage radius.

• neighborhood constitutes a collection of nodes whose overlay addresses
have a proximity order greater or equal to the value of the storage radius.

• multiplexing the act of forwarding (or backwarding) to multiple nodes
when the forwarding peer is in immediate proximity to the neighborhood.

18


	Transport layer
	Underlay network
	Where are keys used?
	Addressing
	Optional components

	Protocols
	Headers
	Streams

	Handshake protocol
	Hive protocol
	Fetching peers using hive/peers stream
	Requesting side
	Responding side
	Sending peers notification using hive/peers stream
	Sending side
	Receiving side

	Retrieval
	Requesting side
	Responding side
	Retries and error cases

	Pushsync
	Pushing side
	Storer side
	Retries and error handling
	Further details

	Pullsync
	Getting cursors
	Requesting the data
	Error handling
	Bootstrapping a node

	Pricing
	Notifying side
	Receiving side

	Settlement
	Paying side
	Accepting side

	Blocklisting
	Caching
	Garbage collection

	Glossary and definitions

